首页> 外文学位 >Numerical simulation of high intensity laser-plasma interaction.
【24h】

Numerical simulation of high intensity laser-plasma interaction.

机译:高强度激光-等离子体相互作用的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

In this work two different areas of high intensity laser-plasma interaction are considered. The first part of the dissertation describes the dynamics of laser-irradiated clusters. It addresses two different regimes of laser-cluster interactions. In the so-called Coulomb regime, the laser pulse removes a significant part of the electrons from the cluster. The remaining electrons form a cold electron core inside a positively charged ion shell. The ion shell expands due to its space charge. A different situation occurs in the so-called hydrodynamic regime. In this case, a two-component electron distribution is formed in the cluster due to stochastic vacuum heating. The cluster remains quasi-neutral and it expands due to the hot electron pressure. Understanding electron and ion dynamics in both these regimes is the main goal of the first part of the dissertation. Stochastic vacuum heating of the electrons is demonstrated in the hydrodynamic regime. Anisotropy in cluster expansion is predicted and the sign of the anisotropy is found to depend on the laser intensity. A model of harmonic generation in clusters is developed. Resonant enhancement of harmonic generation during cluster expansion is demonstrated. Our theoretical models are verified and extended via numerical simulations using a newly-developed particle-in-cell axisymmetric electrostatic code.; The second part of the dissertation deals with laser wakefield acceleration in the self-modulation regime seeded by a Raman shifted low amplitude laser pulse. Raman seeding provides means of coherent control of the excited wakefield. The energy threshold for pulse modulation in the diffraction limited regime is derived. The relative roles of the seed and the leading edge of the pulse in creating an initial perturbation are compared. One dimensional and two dimensional particle-in-cell simulations are employed to model the effects of the seed pulse. Examples of coherent control are demonstrated. Numerical simulations show that a 38 mJ Raman seeded pulse can generate relativistic bunches of ∼1 nC. Conventional (unseeded) self-modulated laser wakefield acceleration would require significantly more energetic pulses at relativistic intensities for generating similar electron bunches. Our results indicate that a pulse repetition rate of ∼1 kHz may be feasible with proper Raman seeding. The simulation also demonstrate the possibility of Raman-seeded acceleration by pulses of subcritical power (P = 1/2 Pc, 19 mJ) in a plasma channel.
机译:在这项工作中,考虑了高强度激光-等离子体相互作用的两个不同区域。论文的第一部分描述了激光辐照团簇的动力学。它解决了两种不同的激光群集相互作用机制。在所谓的库仑状态下,激光脉冲从团簇中去除了很大一部分电子。其余的电子在带正电的离子壳内形成冷电子核。离子壳由于其空间电荷而膨胀。在所谓的流体动力状态中发生了不同的情况。在这种情况下,由于随机真空加热,在簇中形成了两组分电子分布。团簇保持准中性,并且由于热电子压力而膨胀。理解这两种情况下的电子和离子动力学是本文第一部分的主要目标。电子的随机真空加热在流体力学领域得到证明。可以预测簇扩展中的各向异性,并且各向异性的符号取决于激光强度。建立了集群中谐波产生的模型。证明了簇扩展过程中谐波产生的共振增强。我们的理论模型通过使用新开发的单元内粒子轴对称静电代码的数值模拟进行了验证和扩展。论文的第二部分涉及由拉曼位移低振幅激光脉冲产生的自调制状态下的激光尾波加速。拉曼晶种提供了对激发的尾波场进行相干控制的手段。推导了衍射受限状态下脉冲调制的能量阈值。比较了种子和脉冲前沿在产生初始扰动中的相对作用。使用一维和二维单元中粒子模拟来模拟种子脉冲的影响。演示了连贯控制的示例。数值模拟表明,38 mJ拉曼种子脉冲可以产生〜1 nC的相对论束。传统的(非种子)自调制激光尾场加速将需要以相对论强度产生更多的高能脉冲,以产生相似的电子束。我们的结果表明,在适当的拉曼接种条件下,〜1 kHz的脉冲重复频率是可行的。该模拟还证明了通过等离子体通道中的亚临界功率脉冲(P = 1/2 Pc,19 mJ)拉曼种子加速的可能性。

著录项

  • 作者

    Fomyts'kyi, Mykhailo.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Physics Fluid and Plasma.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号