首页> 外文学位 >Euler-Lagrangian Simulations of Turbulent Bubbly Flow.
【24h】

Euler-Lagrangian Simulations of Turbulent Bubbly Flow.

机译:湍流气泡流的欧拉-拉格朗日模拟。

获取原文
获取原文并翻译 | 示例

摘要

A novel one-way coupled Euler-Lagrangian approach, including bubble-bubble collisions, coalescence and variable bubble radius, was developed in the context of simulating large numbers of cavitating bubbles in complex geometries using direct numerical simulation (DNS) and large-eddy simulation (LES). This dissertation (i) describes the development of the Euler-Lagrangian approach, (ii) outlines the novel bubble coalescence model derived for this approach and (iii) describes simulations performed of bubble migration in a turbulent boundary layer, bubble coalescence in a turbulent pipe flow and cavitation inception in turbulent flow over a cavity.;The coalescence model uses a hard-sphere collision model is used and determines coalescence stochastically. The probability of coalescence is computed from a ratio of coalescence timescales, which are dynamically determined from the simulation. Coalescence in a bubbly, turbulent pipe flow (Re tau = 1920) in microgravity was simulated with conditions similar to experiments by Colin et al. [1] and excellent agreement of bubble size distribution was obtained. With increasing downstream distance, the number density of bubbles decreases due to coalescence and the average probability of coalescence decreases due to an increase in overall bubble size.;The Euler-Lagrangian approach was used to simulate bubble migration in a turbulent boundary layer (420 Retau 1800). Simulation parameters were chosen to match Sanders et al. [2], although the Reynolds number of the simulation is lower than the experiment. The simulations show that bubbles disperse away from the wall as observed experimentally. Mean bubble diffusion and profiles of bubble concentration are found to be similar to the passive scalar results, except very near the wall. The carrier-fluid acceleration was found to be the reason for moving the bubbles away from the wall.;The one-way coupled Euler-Lagrangian approach was applied to simulate the experiment of cavitating turbulent flow over a cavity by Liu and Katz [3]. The classical Rayleigh-Plesset equation is integrated using adaptive time-stepping to accurately and efficiently solve for the change of the bubble radius over time. The one-way coupled Euler-Lagrangian model predicts cavitation inception at the trailing edge of the cavity and also in the vortices shed from the leading edge, in qualitative agreement with experiment.
机译:在使用直接数值模拟(DNS)和大涡模拟模拟复杂几何形状中的大量空化气泡的背景下,开发了一种新颖的单向耦合欧拉-拉格朗日方法,其中包括气泡碰撞,聚结和可变气泡半径(LES)。本文(i)描述了Euler-Lagrangian方法的发展,(ii)概述了为此方法导出的新型气泡合并模型,(iii)描述了在湍流边界层中气泡迁移,在湍流管道中气泡合并的模拟腔内湍流的流动和空化开始。聚结模型使用硬球碰撞模型,并随机确定聚结。合并的概率是根据合并时标的比率计算的,该比例是根据仿真动态确定的。在微重力下的气泡状湍流(Re tau = 1920)中的聚结是在类似于Colin等人的实验条件下模拟的。 [1]并获得气泡尺寸分布的极佳一致性。随着下游距离的增加,气泡的数量密度由于聚结而降低,并且平均聚结的概率由于整体气泡尺寸的增加而降低。;使用Euler-Lagrangian方法来模拟气泡在湍流边界层中的迁移(420 < Retau <1800)。选择仿真参数以匹配Sanders等人。 [2],尽管模拟的雷诺数低于实验。模拟表明,如实验观察到的,气泡从壁上分散开。发现平均气泡扩散和气泡浓度分布与被动标量结果相似,但非常靠近壁。发现载流子加速是气泡从壁上移开的原因。; Liu和Katz用单向耦合欧拉-拉格朗日方法模拟了在腔内空化湍流的实验[3]。 。经典的Rayleigh-Plesset方程使用自适应时间步长进行积分,可以准确有效地解决气泡半径随时间的变化。单向耦合的欧拉-拉格朗日模型可预测腔体后缘以及从前缘流下的涡流中的气蚀现象,这与实验定性一致。

著录项

  • 作者

    Mattson, Michael David.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号