首页> 外文学位 >Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Determination of the selenium 'dendrimer effect' origins, mechanism, catalytic cycle, and applications.
【24h】

Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Determination of the selenium 'dendrimer effect' origins, mechanism, catalytic cycle, and applications.

机译:用于过氧化氢活化的树枝状有机硫属元素催化剂:硒“树枝状聚合物效应”的起源,机理,催化循环和应用的测定。

获取原文
获取原文并翻译 | 示例

摘要

The popularity of dendrimers in materials science and organic chemistry has soared over the last ten years. One of the most common applications of dendrimers has been as scaffolds for catalytic functional groups. The dendrimer architecture can offer shape and size-selectivity, ease of recovery, or enhanced reactivity through cooperation. Very few literature examples of dendritic cooperation, leading to higher reaction rates, exist. Of those, the “dendrimer effect” observed during haloperoxidase catalysis with diorganochalcogen(II) end-capped dendrimers is the most outstanding. While the diorganotellurium(II) dendrimers exhibit the expected linear rate of reaction growth with each dendrimer generation, the diorganoselenium(II) dendrimers display an exponential increase over the analogous series. Although benzeneseleninic acid was determined to be an excellent haloperoxidase catalyst, its generation from the selenoxide syn-elimination, is not operative during the observed dendrimer catalysis. The “dendrimer effect” was shown to result from large differences in the rate-limiting step of haloperoxidase catalysis (initial diorganoselenium(II) oxidation). The autocatalytic production, and diffusion inhibition, of BrOH within the dendritic sphere, accelerates the rate-limiting step, and ultimately is the root cause of the selenium “dendrimer effect”. The diorganotellurium(II) dendrimers do not exhibit similar properties, because tellurium oxidation with H2O2 is rapid, and the vehicles of the selenium “dendrimer effect” are not present. Lastly, the application of diorganochalcogen(II) haloperoxidase monomers and wedges toward anti-fouling coatings is described, and exhibits promising results.
机译:在过去的十年中,树枝状大分子在材料科学和有机化学中的普及率飙升。树枝状聚合物最常见的应用之一是用作催化官能团的支架。树枝状聚合物体系结构可通过合作提供形状和尺寸选择性,易于回收或增强的反应性。很少有树突合作导致较高反应速率的文献实例。在那些当中,用双有机碳氢化合物(II)封端的树枝状大分子在卤过氧化物酶催化过程中观察到的“树枝状大分子效应”最为突出。尽管二有机碲(II)树枝状聚合物显示出每一代树状聚合物的预期反应线性增长速率,但二有机硒(II)树枝状聚合物显示出比类似系列更高的指数增长。尽管苯硒酸被认为是一种出色的卤代过氧化物酶催化剂,但在观察到的树状聚合物催化过程中,亚硒酸 syn -消除生成的硒硒酸并不起作用。结果表明,“树枝状聚合物效应”是由于卤过氧化物酶催化的限速步骤(初始二有机硒(II)氧化)差异很大而引起的。树枝状球体内BrOH的自催化产生和扩散抑制,加速了限速步骤,并最终成为硒“树枝状聚合物效应”的根本原因。二有机碲(II)树枝状聚合物不具有相似的性质,因为碲被H 2 O 2 快速氧化,并且不存在硒“树枝状聚合物效应”的媒介。 。最后,描述了二有机organ烷(II)卤代过氧化物酶单体和楔形物在防污涂料中的应用,并显示出令人鼓舞的结果。

著录项

  • 作者

    Drake, Michael Daniel.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 447 p.
  • 总页数 447
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号