首页> 外文学位 >Dechlorination of trichloroethene to ethene by Dehalococcoides -like microorganisms: Kinetics, growth characteristics and substrate limitations.
【24h】

Dechlorination of trichloroethene to ethene by Dehalococcoides -like microorganisms: Kinetics, growth characteristics and substrate limitations.

机译:类Dehaloccocoides微生物将三氯乙烯脱氯为乙烯:动力学,生长特征和底物限制。

获取原文
获取原文并翻译 | 示例

摘要

A potential remediation strategy for the groundwater contaminants, tetrachloroethene (PCE) and trichloroethene (TCE), is biological anaerobic reductive dechlorination. However, incomplete dechlorination to cis-1, 2-dichloroethene (DCE) and vinyl chloride (VC), the latter a known human carcinogen, is a significant problem. To investigate VC and DCE dechlorination in a mixed culture, a quantitative PCR technique was developed and used to confirm that a Dehalococcoides -like microorganism (called bacterium VS) in this culture could couple growth to VC and DCE dehalogenation. Determined yield (Y) and maximum utilization coefficient (qˆ) values agreed well with values found previously for other dechlorinating cultures. This is the first demonstration of microorganism growth through VC reductive dechlorination.; The dechlorinating ability of bacterium VS was compared with two mixed cultures commonly used for bioaugmentation (KB-1 and Pinellas), also containing Dehalococcoides-like microorganisms. Growth rates on VC were similar (0.43, 0.40, and 0.33 d−1 for VS, KB-1 and Pinellas, respectively). The three cultures failed to dechlorinate PCE or did so very slowly. However, unexpectedly all three experienced growth on TCE, and did so with similar growth rates (0.39 d−1). All three mixed cultures also exhibited similar growth rates on DCE (0.36 ± 0.06 d −1), which is about the same as that with TCE and VC. Obtaining energy from each step in the dehalogenation of TCE to ethene will be an important advantage for the use of these cultures in bioaugmentation.; The problem of reaction kinetic limitations on DCE and VC removal was addressed by investigating the effect of limiting substrate concentrations on dechlorination kinetics and microorganism growth. For this, a model based on Monod kinetics but also accounting for competition between DCE and VC and the effect of low electron donor and acceptor (dual-substrate kinetics) was examined. Both the model and experimental data were used to determine substrate concentrations at which the dechlorinating population would be in net decay. The model indicates net decay will result if the total electron acceptor concentration (DCE plus VC) is below 0.7 μM, regardless of electron donor levels. The ability to achieve sustainable bioremediation to acceptable levels can be greatly influenced by this threshold level.
机译:生物厌氧还原性脱氯是对地下水污染物四氯乙烯(PCE)和三氯乙烯(TCE)的潜在补救策略。但是,不完全脱氯成 cis -1、2-二氯乙烯(DCE)和氯乙烯(VC)(后者是已知的人类致癌物)是一个重大问题。为了研究混合培养物中的VC和DCE脱氯,开发了定量PCR技术,并用于证实该培养物中的 Dehaloccocoides 样微生物(称为细菌VS)可以使生长与VC和DCE脱卤耦合。确定的产量(Y)和最大利用系数(q)值与先前在其他脱氯培养物中发现的值非常吻合。这是通过VC还原脱氯进行微生物生长的第一个证明。将VS细菌的脱氯能力与两种通常用于生物增强的混合培养物(KB-1和Pinellas)进行了比较,它们还含有 Dehalococcoides 样微生物。 VC的增长率相近(VS,KB-1和Pinellas分别为0.43、0.40和0.33 d -1 )。三种培养物无法对PCE进行脱氯或去除氯的速度非常缓慢。但是,出乎意料的是,这三个指标均经历了TCE的增长,并且以相似的增长率(0.39 d -1 )实现了增长。三种混合培养物在DCE上也表现出相似的生长速率(0.36±0.06 d -1 ),与TCE和VC大约相同。从三氯乙烯(TCE)脱卤为乙烯的每个步骤中获得能量,对于将这些培养物用于生物强化而言将是一个重要的优势。通过研究限制底物浓度对脱氯动力学和微生物生长的影响,解决了反应动力学限制DCE和VC去除的问题。为此,研究了一个基于Monod动力学的模型,该模型还考虑了DCE和VC之间的竞争以及低电子给体和受体(双底物动力学)的影响。模型和实验数据均用于确定底物浓度,在该浓度下,脱氯种群将处于净衰减状态。该模型表明,如果总电子受体浓度(DCE加VC)低于0.7μM,则将导致净衰减,而与电子供体水平无关。此阈值水平会极大影响实现可持续生物修复至可接受水平的能力。

著录项

  • 作者

    Cupples, Alison Meta.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 88 p.
  • 总页数 88
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号