首页> 外文学位 >Cell lytic enzyme-based nanoscale composites for antimicrobial applications.
【24h】

Cell lytic enzyme-based nanoscale composites for antimicrobial applications.

机译:基于细胞裂解酶的纳米级复合材料,用于抗菌应用。

获取原文
获取原文并翻译 | 示例

摘要

Pathogen–mediated infectious diseases constitute a growing societal problem. As a result, demand for hygienic living conditions has increased and hence created a need for antimicrobial agents and coatings. Taking inspiration from nature, we have designed cell lytic enzyme-based nanoscale systems for such applications. In the first part of this work, we have developed enzyme-based antimicrobial paint nanocomposites that are highly effective against methicillin-resistant Staphylococcus aureus (MRSA) – a pathogenic bacterium responsible for thousands of hospitalizations and deaths per year. We generated active conjugates of lysostaphin, a cell wall-degrading enzyme, by interfacing it with carbon nanotubes. The enzymatic activity of these conjugates was further enhanced by attaching the enzyme onto carbon nanotubes with a poly(ethylene glycol) spacer, which provided mobility and substrate accessibility to the immobilized enzyme molecules. We found the enzyme–based nanocomposites, prepared by incorporating these conjugates in paint matrix, to be highly effective against four different strains of MRSA. The surface characterization using scanning electron microscopy helped us study the coverage of conjugates on the surface of paint nanocomposites. The results from antimicrobial assays suggested that the conjugate-based paints show such bactericidal effect through a contact-active or non-release mechanism. Additionally, we evaluated the long-term storage stability of these enzyme-based paint nanocomposites. Based on these promising results, we further extended this work in collaboration with Prof. Linhardt’s group, and developed a biocompatible and anti-infective bandage system that utilizes electrospun cellulose fibers and lysostaphin. The biocompatibility and anti-infective properties of lysostaphin-cellulose fiber mats were studied using a keratinocyte-based reconstructed in vitro epidermis model. The results strongly suggest that lysostaphincellulose fiber mats could potentially be used in wound-healing applications.;Next, we extended the applicability of our approach by preparing the enzymebased formulations that are effective against vegetative cells and dormant species, i.e., spores of Bacillus cereus (a lab model of B. anthracis). Hydrolytic activity of heterologously expressed and purified cell lytic enzyme, PlyPH, on the peptidoglycan fragments extracted from spore cortex, suggests that the combination of PlyPH and spore coat-permeabilizing agents may potentially result in development of an effective spore neutralization formulation. We exploited the species-specific nature of cell lytic enzymes (PlyPH, lysostaphin, and lysozyme) and luciferase-mediated detection of ATP, in demonstrating a rapid and selective detection of B. cereus, S. aureus, and Micrococcus lysodeikticus, when present in a mixed population. In a final study, we have prepared biocatalytic paint nanocomposites based on cell wall-, protein- and polysaccharide-degrading enzymes, with the objective of designing a surface that limits the surface fouling by bacterial cells. In summary, we have developed cell lytic enzyme-based systems for their potential uses in antimicrobial, antifouling and pathogen-sensing applications.
机译:病原体介导的传染病构成了一个日益严重的社会问题。结果,对卫生生活条件的需求增加,因此产生了对抗菌剂和涂层的需求。从自然界中汲取灵感,我们为此类应用设计了基于细胞裂解酶的纳米系统。在这项工作的第一部分中,我们开发了基于酶的抗菌涂料纳米复合材料,这些复合材料对耐甲氧西林的金黄色葡萄球菌(MRSA)非常有效,而金黄色葡萄球菌是一种致病细菌,每年导致数千例住院和死亡。我们通过将其与碳纳米管相接,生成了溶葡萄球菌素(一种细胞壁降解酶)的活性共轭物。通过使用聚(乙二醇)间隔基将酶连接到碳纳米管上,可进一步增强这些结合物的酶促活性,从而为固定化的酶分子提供流动性和底物可及性。我们发现通过将这些结合物掺入涂料基体中制备的基于酶的纳米复合材料对四种不同的MRSA菌株非常有效。使用扫描电子显微镜的表面表征帮助我们研究了涂料纳米复合材料表面上共轭物的覆盖范围。抗菌测定的结果表明,基于缀合物的涂料通过接触活性或非释放机理显示出这种杀菌作用。此外,我们评估了这些基于酶的涂料纳米复合材料的长期储存稳定性。基于这些有希望的结果,我们与Linhardt教授的小组进一步合作,扩大了这项工作,并开发了一种生物相容性和抗感染性的绷带系统,该系统利用了电纺纤维素纤维和溶葡萄球菌素。使用基于角质形成细胞的体外表皮模型研究了溶葡萄球菌素纤维素纤维垫的生物相容性和抗感染性能。结果强烈表明,溶葡萄球菌纤维素纤维垫可潜在地用于伤口愈合应用中。接下来,我们通过制备对营养细胞和休眠物种(即蜡状芽孢杆菌(Bacillus cereus)的孢子,炭疽杆菌的实验室模型)。从孢子皮层提取的肽聚糖片段上异源表达和纯化的细胞裂解酶PlyPH的水解活性表明,PlyPH和孢子涂层通透剂的组合可能潜在地导致开发有效的孢子中和制剂。我们利用细胞裂解酶(PlyPH,溶葡萄球菌素和溶菌酶)和萤光素酶介导的ATP的物种特异性性质,证明了蜡状芽孢杆菌,金黄色葡萄球菌和溶菌微球菌(如果存在)的快速和选择性检测混合人口。在最终研究中,我们基于细胞壁,蛋白质和多糖降解酶制备了生物催化涂料纳米复合材料,目的是设计一种可限制细菌细胞表面污染的表面。总而言之,我们开发了基于细胞裂解酶的系统,将其潜在地用于抗菌,防污和病原体传感应用。

著录项

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号