首页> 外文学位 >A computational study of flight in the smallest insects.
【24h】

A computational study of flight in the smallest insects.

机译:最小昆虫飞行的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

In order to study the aerodynamics of insect flight for Reynolds numbers in the range of 8--128, the Immersed Boundary Method was used to solve the two-dimensional incompressible Navier-Stokes equations with a flexible moving boundary. Although a number of experimental, numerical, and analytical studies have considered lift forces produced during flight in larger insects, only a few have considered Reynolds numbers below 100. To begin, the immersed boundary method was used to model two-dimensional stiff and flexible wings through one stroke cycle. Lift coefficients fell into two distinct patterns. For Reynolds numbers of 64 and higher, vortices were alternately shed from the wing forming the von Karman vortex street. For Reynolds numbers of 32 and below, leading and trailing edge vortices formed and remained 'attached' to the wing. The vortical symmetry produced at lower Reynolds numbers results in smaller lift forces and suggests that this transition is significant to flight in the smallest insects.; In order to study wing-wing interactions, the immersed boundary method was used to model two rigid or flexible wings performing an idealized 'clap and fling' stroke. The results for stiff wings show that the lift generated during constant translation following 'fling' is substantially higher than the lift generated during steady translation. This effect becomes more significant with decreasing Reynolds number, and could explain why all tiny insects use the 'clap and fling'. The results for flexible wings show that lift is also enhanced during translation following fling. In addition, the drag forces produced are significantly lower than those produced by a stiff wing using the same motion.
机译:为了研究雷诺数在8--128范围内的昆虫飞行的空气动力学特性,采用浸入边界法来求解具有灵活移动边界的二维不可压缩Navier-Stokes方程。尽管许多实验,数值和分析研究都考虑了较大昆虫在飞行过程中产生的升力,但只有少数研究者考虑了雷诺数低于100的现象。首先,采用沉浸边界方法对二维刚性和柔性机翼建模通过一个冲程周期。升力系数分为两种不同的模式。对于雷诺数为64或更高的数字,从形成von Karman涡街的机翼交替散开涡流。对于雷诺数等于或小于32的飞机,前缘和后缘涡流形成并一直“附着”在机翼上。雷诺数较低时产生的涡旋对称性会产生较小的升力,这表明这种转变对最小的昆虫飞行很重要。为了研究机翼与机翼的相互作用,采用沉浸边界方法对执行理想化“拍打和甩动”冲程的两个刚性或柔性机翼建模。刚性机翼的结果表明,在“平移”后的恒定平移过程中产生的升力明显高于稳定平移过程中产生的升力。随着雷诺数的减少,这种影响变得更加明显,并且可以解释为什么所有微小的昆虫都使用“拍打和扑打”。柔性机翼的结果表明,在甩动后的平移过程中升力也得到了增强。另外,所产生的阻力明显小于使用相同运动的刚性机翼所产生的阻力。

著录项

  • 作者

    Miller, Laura Ann.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Mathematics.; Biology Zoology.; Physics Fluid and Plasma.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;动物学;等离子体物理学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号