首页> 外文学位 >Sources and potential application of waste heat utilization at a gas processing facility.
【24h】

Sources and potential application of waste heat utilization at a gas processing facility.

机译:气体处理设施中余热利用的来源和潜在应用。

获取原文
获取原文并翻译 | 示例

摘要

Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production.;The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam.;Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized.;The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load.;At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0.;To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively.;In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.
机译:余热回收(WHR)有潜力显着提高油气厂,化学和其他加工设施的效率,并减少其对环境的影响。在本论文中,对阿布扎比天然气工业有限公司(GASCO)的ASAB气体处理设施进行了全面的能源审计,以识别废热源并评估其现场回收的潜力。考虑了两个工厂,即ASAB0和ASAB1。废热评估标准包括废热等级(即温度),速率,对潜在现场废热回收应用的可及性(即接近性)以及回收对安装性能和安全性的潜在影响。编制了关键余热源生产设备的运行参数以及余热流的特征。此外,还提出了潜在的余热回收应用程序和策略,重点放在实用程序上,即增强过程冷却/加热,电气/机械发电和蒸汽产生。;在ASAB设施中识别出的余热来源包括燃气轮机燃气发生器废气,火炬气,丙烷冷却能力过剩,过程蒸汽过多,过程气体空气冷却器的散热,炉膛废气和蒸汽轮机出口蒸汽。发现ASAB0工厂的一台燃气发生器以及ASAB1工厂的四台燃气轮机满足速率(即> 1 MW),等级(即> 180°C),可及性(即距<50 m潜在的现场WHR应用)以及对现有装置的性能和安全性的最小影响标准,以实现潜在的余热回收。在ASAB0和ASAB1工厂,满足这些标准的废热总量分别估计为256 MW和289 MW,这两者都是相当大的。在ASAB1产生的289兆瓦废物中,约173兆瓦由废热回收蒸汽发生器(WHRSG)回收,剩下116兆瓦未利用。开发了以下策略来回收上述废热。在ASAB0,建议使用所有五个燃气轮机的废气为WHRSG提供动力。由WHRSG产生的蒸汽将i)驱动用于燃气轮机进气冷却的吸收式制冷装置,这将导致额外的电力或机械发电,以及过程气体的预冷却,这可减少对空气的需求或消除空气冷却器,以及减少丙烷冷却器的负荷,并且ii)用于加热稀薄的气体,这将减少炉子的负荷。在ASAB1中,建议将所有四个燃气轮机的废气用于在WHRSG中产生蒸汽,这将驱动吸收式制冷单元,以用于燃气轮机进气冷却以产生更多的电能或机械功率,或对工艺气体进行预冷却以消除空气冷却器并减少丙烷冷却器的冷却负荷。考虑到ASAB1(116 MW)相对于ASAB0(237 MW)可用的废热较少,上述两种回收方法不能在ASAB0上同时实施。为了允许对提议的详细设计和技术经济可行性进行评估在随后的研究中,通过废热回收策略,ASAB0工艺气体空气冷却器的冷却负荷和相关的电力消耗分别估计为21 MW和1.9 MW,ASAB1工厂的分别为67 MW和2.2 MW。此外,用于贫气再生的ASAB0炉的热负荷和燃料消耗分别估计为24 MW和0.0653 MMSCMD 。;在与石油研究所同时进行的建模工作中,废热回收策略已经发现这里提出的方法在热力学和经济上是可行的,并且导致大量的能量和成本节省,因此对环境有利。

著录项

  • 作者

    Alshehhi, Alyas Ali.;

  • 作者单位

    The Petroleum Institute (United Arab Emirates).;

  • 授予单位 The Petroleum Institute (United Arab Emirates).;
  • 学科 Engineering Mechanical.;Energy.
  • 学位 M.Eng.
  • 年度 2011
  • 页码 65 p.
  • 总页数 65
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号