首页> 外文学位 >Fast wavelet solution for electromagnetic integral equations.
【24h】

Fast wavelet solution for electromagnetic integral equations.

机译:电磁积分方程的快速小波解。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, wavelet applications for a fast solution of electromagnetic integral equations are thoroughly studied. Wavelet bases offer the advantage of highly sparse moment-method matrix equations, which can be solved efficiently. The performance of semi-orthogonal and orthogonal wavelets when used for a fast solution of Fredholm integral, equations, which arise in the formulation of wave scattering by two-dimensional conducting cylinders, is first investigated. This basic research consists in the analysis of matrix sparsity, solution accuracy, and matrix condition number, and provides a guideline for the selection of wavelets used for the fast solution of electromagnetic integral equations. It was discovered that the orthogonal wavelets are optimal in terms of the condition number. Then, two kinds of wavelet applications to the method of moments, i.e., the matrix transform approach and the change-of-bases scheme, are compared for the first time for the solution of coupled scalar integral equations governing the problem of scattering by two-dimensional dielectric bodies. The study shows that the change-of-bases scheme gives rise to a better performance in terms of matrix sparsity, while the matrix transform approach provides a problem-independent transform mechanism. Further, the matrix transform approach with orthogonal wavelets is extended to a fast analysis of the scattering by arbitrary bodies of revolution, whose mathematical model contains coupled vector integro-differential equations. Finally, the application of wavelets is effectively used for a fast solution of scattering problems by 3-D inhomogeneous bodies of arbitrary shape, which is formulated as a volume integral equation involving equivalent sources.; Several solution methods for the resultant sparse matrix equations, obtained with the use of wavelets, are also investigated. The conjugate or bi-conjugate gradient (BiCG) iterative algorithms are popular solvers used in the computational electromagnetics community. A sparse conjugate gradient algorithm is effectively used for a fast solution of Fredholm integral equations. A sparse BiCG, with an efficient wavelet transform technique for Toeplitz matrices, is also presented for the fast solution of 3-D volume integral equations associated with the scattering problem by 3-D inhomogeneous bodies. A solution technique using a sparse generalized minimal residual method is demonstrated for the analysis of scattering by conducting bodies of revolution, which is described by a vector integro-differential equation. (Abstract shortened by UMI.)
机译:本文研究了小波在电磁积分方程快速求解中的应用。小波基的优点是矩法方法矩阵稀疏,可以有效地解决。首先研究了在Fredholm积分的快速解中使用半正交和正交小波的性能,这些方程是在二维导电圆柱体的波散射公式中产生的。这项基础研究包括对矩阵稀疏性,解精度和矩阵条件数的分析,并为选择用于电磁积分方程快速求解的小波提供指导。已经发现,正交小波在条件数方面是最佳的。然后,首次比较了矩量法的两种小波应用,即矩阵变换法和基变法,以通过两步法控制耦合的标量积分方程来解决散射问题。尺寸介电体。研究表明,基于矩阵的稀疏性使基于基准的变更方案具有更好的性能,而矩阵变换方法提供了与问题无关的变换机制。此外,具有正交小波的矩阵变换方法已扩展到通过任意旋转体快速分析散射的问题,该旋转体的数学模型包含耦合的矢量积分-微分方程。最后,小波的应用有效地解决了任意形状的3-D不均匀物体的散射问题的快速解决方案,该问题被公式化为包含等效源的体积积分方程。还研究了使用小波获得的稀疏矩阵方程的几种求解方法。共轭或双共轭梯度(BiCG)迭代算法是计算电磁学领域中常用的求解器。稀疏共轭梯度算法有效地用于Fredholm积分方程的快速求解。还提出了一种稀疏的BiCG,它具有适用于Toeplitz矩阵的有效小波变换技术,用于通过3D非均匀物体快速求解与散射问题相关的3D体积积分方程。通过矢量积分微分方程描述了使用稀疏广义最小残差法的求解技术,该技术用于分析旋转导体的散射。 (摘要由UMI缩短。)

著录项

  • 作者

    Quan, Wujun.;

  • 作者单位

    University of Manitoba (Canada).;

  • 授予单位 University of Manitoba (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号