首页> 外文学位 >Robust design and monitoring tools for sustainable and resilient structural design and infrastructure management.
【24h】

Robust design and monitoring tools for sustainable and resilient structural design and infrastructure management.

机译:强大的设计和监视工具,可实现可持续,弹性的结构设计和基础架构管理。

获取原文
获取原文并翻译 | 示例

摘要

Structural systems are subject to inherent uncertainties due to the variability in many hard-to-control 'noise factors' that include but are not limited to external loads, material properties, and construction workmanship. Two design methodologies have been widely accepted in the practicing engineering realm to manage the variability associated with operational structures: Allowable Stress Design (ASD) and Load and Resistance Factor Design (LRFD). These traditional approaches explicitly recognize the presence of uncertainty; however, they do not take robustness against this uncertainty into consideration. Overlooking this robustness against uncertainty in the structural design process has two drawbacks. First, the design may not satisfy the safety requirements if the actual uncertainties in the noise factors are underestimated. Thus, the safety requirements can easily be violated because of the high variation of the system response due to noise factors. Second, to guarantee safety in the presence of this high variability of the system response, the structural designer may be forced to choose an overly conservative, inefficient and thus costly design. When the robustness against uncertainty is not treated as one of the design objectives, this trade-off between the over-design for safety and the under-design for cost-savings is exacerbated. The second chapter of this thesis demonstrates that safe and cost-effective designs can be achieved by implementing Robust Design concepts originally developed in manufacturing engineering to consider the robustness against uncertainty. Robust Design concepts can be used to formulate structural designs, which are insensitive to inherent variability in the design process, thus saving cost, and exceeding the main objectives of safety and serviceability. The second chapter of this thesis presents two methodologies for the application of Robust Design principles to structural design utilizing two optimization schemes: one-at-a-time optimization method and Particle Swarm Optimization (PSO) method.;Next, this multi-disciplinary research project introduces a methodology to build a new framework, Structural Life-Cycle Assessment (S-LCA), for quantifying the structural sustainability and resiliency of built systems. This project brings together techniques and concepts from two distinct disciplines: Structural Health Monitoring (SHM) of Civil Engineering and Life Cycle Assessment (LCA) of Environmental Engineering to construct the aforementioned S-LCA charts. The intellectual innovations of this project lie in the advancement in infrastructure management techniques through the development of S-LCA charts, which can be useful as an infrastructure monitoring and decision-making tool, for quantifying the structural sustainability and resiliency of built systems. Such a tool would be of great use in aiding infrastructure managers when prescribing maintenance and repair schemes, and emergency managers and first responders in allocating disaster relief effort resources. Moreover, a quantitative, real-time evaluation of structural damage after a disaster will support emergency managers in resource allocation. The project integrates science based modeling and simulation techniques with advanced monitoring and sensing tools, resulting in scientifically defendable, objective and quantitative metrics of sustainability and resiliency to be used in infrastructure management.
机译:由于许多难以控制的“噪声因素”(包括但不限于外部载荷,材料特性和施工工艺)的变化,结构系统存在固有的不确定性。在实践工程领域中,两种设计方法已被广泛接受以管理与操作结构相关的可变性:允许应力设计(ASD)和载荷与阻力系数设计(LRFD)。这些传统方法清楚地认识到不确定性的存在。但是,他们没有考虑针对这种不确定性的稳健性。在结构设计过程中忽略这种不确定性的鲁棒性有两个缺点。首先,如果噪声因子的实际不确定性被低估,则设计可能无法满足安全要求。因此,由于噪声因素导致系统响应变化很大,因此很容易违反安全要求。其次,为了在系统响应具有如此高的可变性的情况下保证安全,结构设计人员可能被迫选择过于保守,效率低下和因此昂贵的设计。当针对不确定性的鲁棒性不被视为设计目标之一时,在安全性过高设计与节省成本的过分设计之间的这种权衡会加剧。本论文的第二章证明,通过实施最初在制造工程中开发的“稳健设计”概念来考虑针对不确定性的鲁棒性,可以实现安全且具有成本效益的设计。健壮的设计概念可用于制定结构设计,这些设计对设计过程中的固有可变性不敏感,从而节省了成本,并超出了安全性和可维护性的主要目标。本论文的第二章介绍了两种将稳健设计原理应用于结构设计的方法,其中两种方法分别采用一次优化方法和粒子群优化(PSO)方法。该项目介绍了一种用于构建新框架的方法,即结构生命周期评估(S-LCA),用于量化已构建系统的结构可持续性和弹性。该项目汇集了来自两个不同学科的技术和概念:土木工程的结构健康监测(SHM)和环境工程的生命周期评估(LCA),以构建上述S-LCA图表。该项目的智力创新在于通过开发S-LCA图表来改善基础架构管理技术,该图表可作为基础架构监视和决策工具,用于量化已建系统的结构可持续性和弹性。在制定维护和维修计划时,这种工具在帮助基础设施管理人员以及紧急管理人员和第一响应者分配救灾工作资源时将非常有用。此外,灾难后对结构破坏的实时定量评估将为应急管理人员的资源分配提供支持。该项目将基于科学的建模和仿真技术与先进的监视和传感工具集成在一起,从而产生了可用于基础设施管理的可持续性和弹性的科学防御,客观和定量指标。

著录项

  • 作者

    Dalton, Sarah Katherine.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Civil.;Sustainability.
  • 学位 M.S.
  • 年度 2011
  • 页码 84 p.
  • 总页数 84
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号