首页> 外文学位 >Global Structure of the Nightside Proton Precipitation during Substorms using Simulations and Observations.
【24h】

Global Structure of the Nightside Proton Precipitation during Substorms using Simulations and Observations.

机译:使用模拟和观察,亚暴期间夜边质子沉淀的整体结构。

获取原文
获取原文并翻译 | 示例

摘要

In regions of thin strong current sheets, the first adiabatic invariant of protons can be violated leading to pitch angle diffusion into the loss cone and ultimately auroral precipitation. The central plasma sheet typically provides a stretched enough magnetic field configuration to account for the nightside proton precipitation. During substorms, the outflow from the near earth reconnection line at approximately 20 RE brings magnetic flux from the highly stretched magnetotail into the near earth magnetosphere. Once there, the flux piles up forming an azimuthally localized region where the magnetic field is more dipolar. Current flows into and out of the ionospere at the edges of this dipolarized region forming the substorm current wedge (SCW). As the substorm continues, the SCW typically grows azimuthally and radially as the result of the continued flux pileup. Using the OpenGGCM global MHD simulation, we show that the proton precipitation can be split azimuthally due to the arrested scattering in the strongly dipolarized region at the center of the SCW. However, at the edges of the SCW where the dipolarization is not as complete (and certainly outside the SCW), the mean gyroradii increase due to the energization of the near earth magnetotail may he sufficient to facilitate continued scattering. The simulation predictions of auroral splitting are compared to a statistical study using data from the IMAGE SI-12 instrument. The IMAGE SI-12 frequently shows localized azimuthal splitting of the proton aurora similar to the simulations. Additionally, the splitting of the proton aurora is much more common for stronger substorms (lower AL and onset latitude) winch is also argued to be consistent with the simulations.
机译:在薄的强电流层的区域中,质子的第一个绝热不变性可能会受到侵犯,从而导致螺距角扩散到损失锥中,最终出现极光沉淀。中央等离子体片通常提供足够伸展的磁场构造,以解决夜间质子沉淀。在亚暴期间,近地重新连接线在大约20 RE处的流出将磁通量从高度伸展的磁尾带入近地磁层。一旦到达那里,磁通就会堆积起来,形成一个方位角局部区域,在该区域中磁场更加呈偶极性。电流在该双极化区域的边缘流入和流出电离膜,形成亚暴雨电流楔形(SCW)。随着亚暴的继续,由于连续的通量堆积,SCW通常沿方位角和径向增长。使用OpenGGCM全局MHD模拟,我们显示,由于SCW中心的强双极化区域中的散射被阻止,因此质子沉淀可以按方位角拆分。但是,在SCW的两极极化不完全的边缘处(当然在SCW之外),由于近地磁尾的通电而导致的平均回旋半径可能足以促进连续散射。使用IMAGE SI-12仪器的数据,将极光分裂的模拟预测与统计研究进行比较。 IMAGE SI-12经常显示质子极光的局部方位角分裂,类似于模拟。另外,对于强次风暴(较低的AL和起始纬度)绞盘,质子极光的分裂更为普遍,也被认为与模拟一致。

著录项

  • 作者

    Gilson, Matthew L.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号