首页> 外文学位 >Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations.
【24h】

Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations.

机译:卫星空气动力计算的动态气-地相互作用模型。

获取原文
获取原文并翻译 | 示例

摘要

Drag coefficients are a large source of uncertainty when predicting the aerodynamic forces on orbiting satellites. Accordingly, the focus of this research is to improve the fidelity of drag modeling by investigating the nature of gas-surface interactions in low earth orbit. The author has investigated to what extent oxygen adsorption can influence the parameters of drag coefficient models, most notably the energy accommodation coefficient. To accomplish this, several analysis techniques are applied. Fitted drag coefficients for 68 objects were provided by Air Force Space Command Drag Analysis Office and are analyzed using analytical and numerical aerodynamic models. Gas-surface parameters are estimated by comparing the model results to the observed coefficients. The results indicate that a successful and predictive relationship of the energy accommodation coefficient can be obtained with gas-surface models incorporating Langmuir adsorption. Good agreement with data has been obtained by using a cosine reflection model below 500 km. Furthermore, it is found that satellite accommodation coefficients can be explained by a model in which atomic oxygen binds to the surface with an energy of approximately 5.7 eV. Multi-axis accelerometer data from the CHAMP and GRACE satellites has also been analyzed to derive measurements of lift and drag which are compared to model predictions given different gas-surface assumptions. The results indicate that diffuse reflection is appropriate for CHAMP near 400 km and that the accommodation coefficient before 2008 ranges between 0.86 and 0.89. CHAMP accelerometer data is also combined with remote sensing estimates of density to arrive at values of drag coefficient which do not depend on empirical atmospheric models alone. This dataset confirms the predicted drop in accommodation with decreasing atomic oxygen pressure. The culmination of this work is an enhanced energy accommodation and drag coefficient model applicable between 100 km and 500 km altitudes for satellites in both circular and elliptical orbits.
机译:当预测轨道卫星上的空气动力时,阻力系数是很大的不确定性来源。因此,本研究的重点是通过研究低地球轨道上气体表面相互作用的性质来提高阻力模型的保真度。作者研究了氧气吸附在多大程度上影响阻力系数模型的参数,最显着的是能量调节系数。为此,应用了几种分析技术。空军空间司令部阻力分析办公室提供了适合68个物体的阻力系数,并使用分析和数值空气动力学模型进行了分析。通过将模型结果与观察到的系数进行比较,可以估算出气体表面参数。结果表明,利用结合了Langmuir吸附的气体表面模型可以获得成功的和预测的能量容纳系数关系。通过使用低于500 km的余弦反射模型已经获得了与数据的良好一致性。此外,发现卫星容纳系数可以通过模型解释,其中原子氧以大约5.7 eV的能量结合到表面。还对来自CHAMP和GRACE卫星的多轴加速度计数据进行了分析,以得出升力和阻力的测量结果,并与给定不同气体表面假设的模型预测结果进行比较。结果表明,漫反射适合CHAMP在400 km附近,并且2008年前的调节系数在0.86和0.89之间。 CHAMP加速度计数据还与密度的遥感估计值结合在一起,得出了阻力系数值,该值不仅仅依赖于经验大气模型。该数据集证实了随着原子氧压降低而预测的适应性下降。这项工作的高潮是增强的能量调节和阻力系数模型,适用于在100和500 km高度之间的圆形和椭圆形轨道上的卫星。

著录项

  • 作者

    Pilinski, M. D.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Aeronomy.;Engineering Aerospace.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号