首页> 外文学位 >Algebraic Models for the Free Loop Space and Differential Forms of a Manifold.
【24h】

Algebraic Models for the Free Loop Space and Differential Forms of a Manifold.

机译:自由回路空间和流形的微分形式的代数模型。

获取原文
获取原文并翻译 | 示例

摘要

Our initial goal is to give a chain level description of the string topology loop product for a large class of spaces. This effort is described in two parts; the first uses Brown's theory of twisting cochains to obtain a model for the free loop space of a manifold and the second constructs a minimal model for the Frobenius algebra of differential forms of a manifold. The first part defines the loop product for closed, oriented manifolds and Poincare Duality spaces. The second part is an attempt to understand the minimal model for the Frobenius algebra of a manifold, with the idea of extending the methods in the first section to define the loop product for open manifolds.;Brown's theory of twisting cochains provides a chain model of a principal G-bundle and its associated bundles. The free loop space is obtained by considering the path space fibration, and taking the associated bundle with the based loop space acting on itself by conjugation. Given a twisting cochain, then, we obtain a chain model of LM using Brown's theory. To describe the chain-level loop product in this setting, we need a model for the intersection product in the chains on M. For this, we use the cyclic commutative infinity algebra structure on the homology of M. Such a description would give a chain level description of the string topology loop product for open manifolds.;Instead of using the cyclic commutative algebra, we could have used the Frobenius algebra structure. One would expect that the Frobenius infinity algebra can be used to show the necessary relations to define the loop product. Then given the Frobenius infinity algebra on the homology of M for an open manifold, we would have a chain level description of the loop product.;The purpose of Section 3 is to gain a better understanding of the Frobenius infinity algebra on the cohomology of M. The Frobenius algebra, induced by the wedge product and Poincare Duality, is well understood; the structure on the level of forms inducing the Frobenius algebra is less well understood. We use the language of operads, dioperads, and properads and Koszul duality to give a definition of Frobenius infinity algebra. We also use descriptions of the transfer of structure using trees and integrating over cells in the moduli space of metrised ribbon graphs. When M is closed and oriented, these tools allow us to build a minimal model for the Frobenius algebra of differential forms on M and to compare it with the cyclic commutative infinity algebra.
机译:我们的最初目标是针对一大类空间给出字符串拓扑循环乘积的链级描述。此工作分为两个部分:第一种使用布朗的共链加捻理论来获得流形的自由环空间的模型,第二种使用流形的微分形式的Frobenius代数构造一个最小模型。第一部分定义了封闭的定向歧管和Poincare对偶空间的回路乘积。第二部分是尝试理解流形的Frobenius代数的最小模型,其思想是扩展第一部分中的方法以定义开放流形的回路乘积。布朗的共链扭曲理论提供了一个链模型。主要G捆绑包及其关联的捆绑包。通过考虑路径空间的振动,并通过结合作用将带束与作用于自身的基于基础的环形空间联系起来,从而获得自由的环形空间。在给定扭曲的共链的情况下,我们使用布朗理论获得了LM的链模型。为了描述这种情况下的链级回路乘积,我们需要一个模型,用于M上链的相交积。为此,我们在M的同源性上使用循环可交换无穷代数结构。这样的描述将给出一条链开放流形的字符串拓扑循环乘积的简要描述。我们可以使用Frobenius代数结构来代替循环交换代数。人们会期望Frobenius无限代数可以用来显示定义循环乘积的必要关系。然后给定关于开放流形的M同源性的Frobenius无穷代数,我们将对回路乘积进行链级描述。;第3节的目的是更好地理解M的同调性的Frobenius无穷代数由楔乘积和庞加莱对偶性引起的弗罗贝尼乌斯代数是众所周知的。关于形式Frobenius代数的形式的结构了解得很少。我们使用操作数,双操作数和固有语言以及Koszul对偶性的语言来给出Frobenius无穷代数的定义。我们还使用结构化转移的描述来描述树木,并在对称带状图的模空间中对单元进行积分。当M是闭合的和定向的时,这些工具使我们能够为M上的微分形式的Frobenius代数建立一个最小模型,并将其与循环可交换无穷代数进行比较。

著录项

  • 作者

    Miller, Micah Israel.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号