首页> 外文学位 >Higher-order physics for modeling ice streams in ice sheets.
【24h】

Higher-order physics for modeling ice streams in ice sheets.

机译:用于模拟冰盖中冰流的高阶物理。

获取原文
获取原文并翻译 | 示例

摘要

Ice streams are transitional between inland glaciers and ice shelves. Hence no stresses can be neglected. Ice streams are important dynamic features of a glacier; it is well known that ice streams drain up to 90% of the ice from an ice sheet. Herein I model ice streams as a multiphysics system of coupled components. This includes treating ice as a non-Newtonian fluid since empirical measurements show a power law relation between stress and strain rate. Sliding is a physical feature that must be included. This is done with a novel approach to sliding by way of a slippery layer. The slippery layer is given negligible thickness and rheology is tuned to the ice stream being modeled.;Testing and benchmarking verifies the model. The first comparison is made with the shallow ice approximation, a known analytical solution. The model is setup with a problem domain in which basal stress dominates. Comparison of the surface velocities shows excellent agreement. A second comparison involves a problem domain where longitudinal stress dominates. In this case a floating slab of is tested for creep via Weertman thinning. The model solution shows excellent agreement with the analytical solution of Weertman thinning.;Additional benchmarking tests other model parameters to ensure proper settings. These include proper discretization of the problem domain and analysis of aspect ratio effects, the ratio of width to height. The temperature solver is tested for conduction dominated problem domains as well as advection and strain heating dominated problem domains. Again the model yields expected results.;The model application to a real world ice stream is made with Whillans Ice Stream, which is located in Antarctica. Model results show that temperature is dominated by advection and that velocities show nearly plug-flow, in which vertical columns of ice move. The slippery layer tuned with a uniform softening shows better agreement with measured surface velocities [17] than tuning with a progressive softening.
机译:冰流在内陆冰川和冰架之间过渡。因此,不能忽略任何压力。冰流是冰川的重要动态特征。众所周知,冰流最多可从冰原中排出90%的冰。在此,我将冰流建模为耦合组件的多物理场系统。这包括将冰视为非牛顿流体,因为经验测量表明应力和应变率之间存在幂律关系。滑动是必须包括的物理功能。这是通过一种新颖的方法来实现的。光滑层的厚度可以忽略不计,流变学被调整为要建模的冰流。测试和基准测试验证了模型。第一次比较是采用浅冰近似方法(一种已知的分析方法)进行的。该模型设置有一个以基础应力为主的问题域。表面速度的比较显示出极好的一致性。第二种比较涉及纵向应力占主导的问题域。在这种情况下,将通过Weertman细化测试浮动板的蠕变。模型解决方案与Weertman细化的解析解决方案显示出极好的一致性。这些措施包括对问题域进行适当的离散化以及对宽高比效果(宽高比)进行分析。对温度求解器进行了传导主导的问题域以及对流和应变加热主导的问题域的测试。再次,该模型产生了预期的结果。;使用位于南极洲的Whillans冰流将模型应用于实际世界的冰流。模型结果表明,温度主要由平流控制,速度几乎显示出塞流,其中垂直的冰柱在其中移动。与均匀软化相比,经均匀软化调整的光滑层显示出与测得的表面速度更好的一致性[17]。

著录项

  • 作者

    Kenneway, Debra A.;

  • 作者单位

    The University of Maine.;

  • 授予单位 The University of Maine.;
  • 学科 Physics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号