首页> 外文学位 >Multi-scale engineering and modeling of heterologous natural product biosynthesis in Escherichia coli.
【24h】

Multi-scale engineering and modeling of heterologous natural product biosynthesis in Escherichia coli.

机译:大肠杆菌中异源天然产物生物合成的多尺度工程和建模。

获取原文
获取原文并翻译 | 示例

摘要

The engineering of biological systems for industrial applications is a complex process. Optimization of a cellular phenotype is complicated by the sheer number of genetic and environmental variables. With regards to heterologous natural product biosynthesis, this is further complicated by the foreign nature of the metabolic pathways and structurally complex products involved. To address this problem, heuristic and systematic approaches were employed for the engineering of two heterologous natural products (a polyketide and an isoprenoid) in Escherichia coli. The methods developed and applied herein are critical to advancing the field of heterologous natural product biosynthesis to the scale of competitive industrial bioprocesses.;Stoichiometric modeling was applied to survey heterologous hosts for supporting polyketide biosynthesis. Simulations under different host and environmental conditions revealed multiple gene knockouts that were capable of improving product titer. Work has shown that multiple pathways exist in nature for producing the two precursors necessary for polyketide production; however, E. coli does not possess these. These heterologous pathways were expressed, and with concurrent substrate feeding experiments, their effects were analyzed on polyketide production. Native gene over-expressions and deletions also improved polyketide titer.;vii Due to an inability to thoroughly search genomic space with the aforementioned computational method, a new algorithm was developed to identify knockout targets based on network topology and applied to isoprenoid production. By using a genetic algorithm, this method identified a four knockout strain capable of improved titer, while reducing computation time by several orders of magnitude. When constructed in the laboratory using an accelerated genome evolution method, isoprenoid yield improved nearly 3-fold in some cases. The aforementioned algorithm was reformulated in an attempt to identify over-expression targets for improving isoprenoid titer. This method identified four targets, three of which improved titer when implemented genetically, though failed to meet the predicted levels of improvement. Upon over-expression of the isoprenoid biosynthetic pathway genes, one gene improved titer to a higher extent than the predicted targets (almost 4-fold), showing that the rate-limiting step lies within the pathway itself. Applying heuristics for isoprenoid production, heterologous gene promoter strength, strain background, and process-related parameters were varied and allowed for a 240-fold improvement in titer.
机译:用于工业应用的生物系统工程是一个复杂的过程。大量的遗传和环境变量使细胞表型的优化变得复杂。关于异源天然产物的生物合成,由于代谢途径和结构上复杂的产物的外来特性,这使情况进一步复杂化。为了解决这个问题,采用了启发式和系统的方法对大肠杆菌中的两种异源天然产物(聚酮化合物和类异戊二烯)进行工程改造。本文开发和应用的方法对于将异源天然产物生物合成的领域推进到竞争性工业生物过程的规模至关重要。;化学计量模型用于调查异源宿主以支持聚酮化合物的生物合成。在不同宿主和环境条件下的模拟显示了多个基因敲除能够提高产物滴度。工作表明,自然界中存在多种途径来生产聚酮化合物生产所需的两种前体。但是,大肠杆菌没有这些。表达了这些异源途径,并通过同时的底物进料实验,分析了它们对聚酮化合物产生的影响。原生基因的过表达和缺失也改善了聚酮化合物的滴度。vii由于无法使用上述计算方法彻底搜索基因组空间,因此开发了一种新算法来基于网络拓扑识别敲除靶标并将其应用于类异戊二烯生产。通过使用遗传算法,该方法确定了能够提高滴度的四种敲除菌株,同时将计算时间减少了几个数量级。在实验室中使用加速的基因组进化方法构建时,类异戊二烯的产量在某些情况下提高了近3倍。重新设计了前面提到的算法,以试图确定用于改善类异戊二烯效价的过表达靶标。该方法确定了四个目标,尽管通过遗传方法实现,但其中三个改善了效价,尽管未能达到预期的改善水平。当类异戊二烯生物合成途径基因过表达时,一个基因的滴度改善程度高于预测的靶点(几乎是4倍),表明限速步骤位于途径本身内。应用启发式方法生产类异戊二烯,异源基因启动子强度,菌株背景以及与过程相关的参数均发生了变化,并使效价提高了240倍。

著录项

  • 作者

    Boghigian, Brett Adam.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Chemistry Biochemistry.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 383 p.
  • 总页数 383
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号