首页> 外文学位 >Categorification of knot and graph polynomials and the polynomial ring.
【24h】

Categorification of knot and graph polynomials and the polynomial ring.

机译:结和图多项式以及多项式环的分类。

获取原文
获取原文并翻译 | 示例

摘要

Categorification lifts numbers to vector spaces and vector spaces to categories. A prime example is turning Euler characteristic of a topological space into its homology groups. Important examples include various link homology groups which lift polynomial invariants of knots. For instance, Khovanov homology lifts the Jones polynomial and Ozsvath-Szabo-Rassmussen homology lifts the Alexander polynomial. Knots, via their diagrams, are closely related to planar graphs. Recently, several graph invariants have also been categorified, such as the chromatic and the Tutte polynomial. Chromatic cohomology for graphs provides a link between link homology and well developed theory of Hochschild homology [Pr2]. We utilize this correspondence to partially prove A. Shumakovitch's conjecture claiming that alternating links can have only 2-torsion and that any link which is not a connected or disjoint sum of Hopf links and trivial links has torsion in Khovanov homology [Sh]. Shumakovitch proved the conjecture for alternating links and M. Asaeda, J. Przytycki [AP] proved the existence of Z2-torsion in Khovanov homology of a large class of adequate links. We extend these results using the modified chromatic graph cohomology to semi-adequate knots [PS], and we explicitly compute 2-torsion [PPS]. These results can be used for describing torsion in Khovanov homology of some positive braids. Moreover, we analyze torsion in chromatic cohomology over other algebras of truncated polynomials, focusing on algebra Z [x]/x3.;Inspired by the general idea of categorification, introduced by Mikhail Khovanov, we construct categorification of one variable polynomials [KS]. This ring becomes a Grothendieck ring of a suitable additive monoidal category of (finitely generated) projective modules over an idempotented geometrically defined ring. Monomials xn become indecomposable projective modules, while polynomials (x -- 1) n turn into so-called standard modules. These collections of modules together with simple modules satisfy the Bernstein-Gelfand-Gelfand reciprocity property. Various basic structures of the theory of orthogonal polynomials, such as the kernels that approximate the identity operator, admit categorical lifting in our framework, which generalizes to the categorification of one variable orthogonal polynomials, including Chebyshev and Hermite polynomials.
机译:分类将数字提升到向量空间,将向量空间提升到类别。一个典型的例子是将拓扑空间的欧拉特性转变为它的同源性组。重要的例子包括各种提升链结多项式不变量的链接同源性组。例如,科沃诺夫(Khovanov)同源性提升了琼斯多项式,奥兹瓦斯-萨博(Ozsvath-Szabo-Rassmussen)同源性提升了亚历山大多项式。通过其结,结与平面图密切相关。最近,还对几种图形不变式进行了分类,例如色度和Tutte多项式。图的色同调提供了链接同源性与成熟的Hochschild同源性理论[Pr2]之间的联系。我们利用这种对应关系部分证明了A. Shumakovitch的猜想,即交替的链节只能具有2扭转,并且任何不是Hopf链节和琐碎的链节的连接或不相交之和的链节都具有Khovanov同源性[Sh]。 Shumakovitch证明了交替链接的猜想,M。Asaeda,J。Przytycki [AP]证明了一大类适当链接的Khovanov同源性中存在Z2-扭转。我们使用修改后的色图同调性将这些结果扩展到半适当的结[PS],并显式计算2扭转[PPS]。这些结果可用于描述一些正辫子的科沃诺夫同源性中的扭转。此外,我们还分析了截短多项式的其他代数上色同调的扭转,重点是代数Z [x] / x3 。;受Mikhail Khovanov提出的一般分类概念的启发,我们构造了一个可变多项式[KS]的分类。该环成为在幂等几何定义的环上(有限生成的)射影模块的适当加成单项类别的Grothendieck环。单项式xn变成不可分解的投射模,而多项式(x-1)n变成所谓的标准模。这些模块集合与简单模块一起满足了Bernstein-Gelfand-Gelfand互惠属性。正交多项式理论的各种基本结构(例如逼近身份运算符的内核)在我们的框架中承认分类提升,这归纳为一个变量正交多项式的分类,包括Chebyshev和Hermite多项式。

著录项

  • 作者

    Sazdanovic, Radmila.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号