首页> 外文学位 >A meshless finite difference method for fluid flow and heat transfer.
【24h】

A meshless finite difference method for fluid flow and heat transfer.

机译:用于流体流动和传热的无网格有限差分方法。

获取原文
获取原文并翻译 | 示例

摘要

Mesh generation consumes a substantial portion of human time in computational fluid dynamics (CFD) simulations of complex industrial geometries. Despite the progress in developing solvers and mesh generation techniques for unstructured meshes, the task remains onerous. Therefore, there has been a great deal of interest in recent years to develop computational techniques that eliminate the mesh generation task altogether, through the use of meshless methods. A number of successful schemes have been published, most commonly for structural analysis, but also for fluid flow. Nevertheless, it is fair to say that the field is still in its infancy, and many needs exist for improving discretization accuracy and solution speed.;In this thesis, a meshless finite difference scheme is developed for steady incompressible flows of Newtonian fluids using a weighted least-squares method. The weighted least-squares method is used to fit a polynomial which is then compared to the Taylor series in order to compute approximations to the derivatives appearing in the governing equations. The method is applied in sequence to the heat diffusion equation, the convection-diffusion equation, and finally to the incompressible steady Navier-Stokes equations, and its accuracy and convergence properties are evaluated.;Heat conduction in a constant conductivity domain is first computed using structured and unstructured distributions of points in order to establish the order of accuracy of the method. Conjugate heat conduction problems are addressed subsequently, with conductivity ratios of up to 1000. The solutions obtained using the meshless finite difference method are compared to those obtained using the commercial software, FLUENT. Good comparisons with published analytical and numerical solutions are obtained. The scheme is shown to be free of spurious spatial oscillations that plague many published meshless schemes for conjugate heat transfer, especially at high conductivity ratios.;Scalar transport in the presence of a given velocity field is simulated next. The focus here is to develop analogues to convection schemes used in traditional finite differences. These include the first-order upwind scheme, the second-order central difference scheme and a new technique called the minimum gradient method, inspired by the essentially non-oscillatory (ENO) scheme. The stability of the solution procedure is demonstrated for a range of Peclet numbers. The order of accuracy is established by comparing computed solutions to available exact solutions.;Finally, the most important element of CFD, namely the fluid flow solution method, is tackled. A non-staggered velocity-pressure formulation is the most convenient option for a meshless method. Therefore, the scheme stores pressure and velocity at all computational points. Our focus is on the solution of incompressible flows using sequential and iterative schemes. Hence, a modified explicit fractional-step technique is developed for the meshless method. At each time step, the momentum equations are first solved without a pressure gradient term using an explicit time step, and yield an auxiliary velocity field. This auxiliary velocity is not continuity satisfying, and therefore must be corrected; the pressure is computed in such as way as to ensure that the resulting velocity field is divergence-free. In this work, the auxiliary velocity field is decomposed into curl-free and divergence-free components. The curl-free component is cast as the gradient of a scalar field, and this field is solved for, using boundary conditions derived from those imposed on pressure. The pressure is then computed posteriori from the scalar field through a simple algebraic relationship.;The explicit fractional time-stepping algorithm for fluid flow is tested on three fluid flow problems: 2D channel flow, the driven cavity problem, and a vortical flow problem based on the method of manufactured solutions. In all three cases, stable and accurate solutions free of pressure and velocity checkerboarding are obtained. Two different convective schemes, the first order upwind scheme and the central difference scheme, are tested for each of the three problems. The order of accuracy of the solution is established, and is found to be limited by that of the convective operator. Furthermore, the computational effort and CPU time for the computations are also found.;The thesis establishes that a viable meshless finite difference method may be developed for incompressible flows. Future work includes the extension of the work to implicit fractional time-stepping schemes, alternative u-v-p coupling algorithms, application to complex geometries in porous media, particle beds and foams, and in fluid-structure interaction problems combining meshless methods for both fluid and structure.
机译:在复杂的工业几何形状的计算流体动力学(CFD)模拟中,网格的生成会消耗大量的时间。尽管在开发用于非结构化网格的求解器和网格生成技术方面取得了进展,但任务仍然很繁重。因此,近年来,人们对开发通过使用无网格方法完全消除网格生成任务的计算技术产生了浓厚的兴趣。已经发布了许多成功的方案,最通常用于结构分析,但也用于流体流动。尽管如此,可以公平地说,该领域仍处于起步阶段,并且对于提高离散化精度和求解速度存在着许多需求。本文采用加权方法,为牛顿流体的稳定不可压缩流动建立了无网格有限差分方案。最小二乘法。加权最小二乘法用于拟合多项式,然后将其与泰勒级数进行比较,以便计算对控制方程中出现的导数的近似值。将该方法依次应用于热扩散方程,对流扩散方程,最后应用于不可压缩的稳态Navier-Stokes方程,并对其准确性和收敛性进行了评估。点的结构化和非结构化分布,以建立方法准确性的顺序。随后解决了共轭导热问题,电导率高达1000。将使用无网格有限差分法获得的解与使用商业软件FLUENT获得的解进行比较。与已发布的分析和数值解决方案进行了很好的比较。该方案显示没有杂散的空间振荡,这些杂乱的空间振荡困扰了许多已发表的无网格共轭传热方案,特别是在高传导率的情况下。接下来,模拟了在给定速度场存在下的标量传输。这里的重点是开发与传统有限差分法中使用的对流方案类似的方案。这些措施包括一阶迎风方案,二阶中心差分方案和一种受最小非振荡(ENO)方案启发的称为最小梯度法的新技术。证明了一系列Peclet数解法的稳定性。通过将计算出的解与可用的精确解进行比较,可以确定精度的顺序。最后,解决了CFD最重要的要素,即流体流解法。对于无网格方法,无交错速度-压力公式是最方便的选择。因此,该方案在所有计算点都存储了压力和速度。我们的重点是使用顺序和迭代方案来解决不可压缩流。因此,为无网格方法开发了一种改进的显式分数步技术。在每个时间步长,首先使用明确的时间步长求解不带压力梯度项的动量方程,并产生辅助速度场。该辅助速度不能满足连续性,因此必须进行校正。计算压力时要确保所产生的速度场没有散度。在这项工作中,辅助速度场被分解为无卷曲和无散度的分量。将无卷曲分量转换为标量场的梯度,并使用从施加于压力的边界条件得出的边界条件来解决该场。然后通过简单的代数关系从标量场中计算压力后验;在三种流体流动问题上测试了显式分数时间步长的流体流动算法:二维通道流动,从动空腔问题和基于涡旋流动的问题关于制造溶液的方法。在这三种情况下,都可以获得稳定而准确的解决方案,而没有压力和速度棋盘。针对这三个问题,分别测试了两种不同的对流方案,即一阶迎风方案和中央差分方案。确定了解决方案精度的顺序,并发现它受对流运算符的限制。此外,还找到了计算的计算量和计算时间。本文建立了一种可行的无网格有限差分方法,可以发展为不可压缩流。未来的工作包括将工作扩展到隐式分数时间步长方案,替代的u-v-p耦合算法,将其应用于多孔介质,颗粒床和泡沫中的复杂几何形状以及流体与结构相互作用的无网格方法(结合无网格方法)。

著录项

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号