首页> 外文学位 >Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters.
【24h】

Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters.

机译:基于知识的系统支持的智能个人导航器,用于估算航位推算导航参数。

获取原文
获取原文并翻译 | 示例

摘要

Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments.;DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL).;In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a two-stage Kalman Filter approach. The performance comparison of the algorithm based on different field and simulated datasets, with varying levels of sensor errors, showed that 90 per cent success rate was achieved in detection of outliers for SL and 80 per cent for SD. The SL is predicted for both KBS-based ANN and FL approaches with an average accumulated error of 2 per cent, observed for the total distance traveled, which is generally an improvement over most of the existing pedometry systems.;The target accuracy of the system is +/-(3-5)m CEP50 (circular error, probable 50%). This dissertation provides a performance analysis in the outdoor and indoor environments for different operators. Another objective of this dissertation is to test the system's navigation limitation in DR mode in terms of time and trajectory length in order to determine the upper limit of indoor operations. It was determined that for more than four indoor loops, where the user walked 261m in about 6.5 minutes, the DR performance met the required accuracy specifications. However, these results are only relevant to the existing data. Future studies should consider more comprehensive performance analysis for longer trajectories in challenging environments and possible extension to image-based navigation to expand the indoor capability of the system.
机译:在不同领域和应用中对个人导航器(PN)进行了大约十年的研究,例如安全和救援行动,安全和紧急服务以及警察和军事应用。所有这些应用程序的共同目标是在各种环境中提供每个人的精确和可靠的位置,速度和航向信息。在本文开发的PN系统中,基本假设是该系统不需要预先存在的基础设施即可进行行人导航。为了促进此功能,已经开发了基于全球定位系统(GPS),惯性导航,气压计,磁力计和人体计步器模型的多传感器系统概念。该设计的一个重要方面是将人体用作导航传感器,以在GPS挑战的环境中促进航位推算(DR)导航。该系统主要用于可能偶尔丢失GPS锁定的室外环境。然而,测试和性能演示已扩展到室内环境。DR导航基于相对测量方法,其关键思想是以步长方向(SD)和步长(SL)的形式集成增量运动信息随着时间的推移。这里提出的智能导航系统概念的基础在于开发人类的运动模式以及在不同环境中运动的变化。在这种情况下,术语“智能导航”代表使用有关移动人员机制的知识从常规点对点DR到动态导航的过渡。这种方法越来越依赖于集成基于知识的系统(KBS)和人工智能(AI)的方法,包括人工神经网络(ANN)和模糊逻辑(FL)。;此外,用于实物质量控制的通用框架基于两阶段卡尔曼滤波方法,提出了DR处理的时间验证。基于不同领域和模拟数据集的算法的性能比较,不同的传感器误差水平表明,SL异常值检测成功率达到90%,SD异常值检测成功率达到80%。对于基于KBS的ANN和FL两种方法,预计SL的平均累积误差为2%,可观察到总行驶距离,这通常比大多数现有计步器系统有所改善。是+/-(3-5)m CEP50(圆形误差,可能为50%)。本文为不同的操作人员提供了在室外和室内环境下的性能分析。本文的另一个目的是在时间和轨迹长度方面测试DR模式下系统的导航限制,从而确定室内运行的上限。已确定,对于四个以上的室内环路(用户在6.5分钟左右的时间内行走261m),DR性能符合要求的精度规格。但是,这些结果仅与现有数据有关。未来的研究应考虑在挑战性环境中对更长的轨迹进行更全面的性能分析,并可能扩展到基于图像的导航以扩展系统的室内功能。

著录项

  • 作者

    Moafipoor, Shahram.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Remote Sensing.;Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号