首页> 外文学位 >Qubit-resonator system as an application to quantum computation.
【24h】

Qubit-resonator system as an application to quantum computation.

机译:量子比特谐振器系统作为量子计算的应用。

获取原文
获取原文并翻译 | 示例

摘要

The recent development of quantum computation has inspired lots of interesting ideas in a variety of fields. It is surprising, and yet not surprising, to see that even systems with very distinct forms can resemble each other in many ways. In our study of a solid state mesoscopic system, we found that it bears many features similar to those being seen in cavity quantum electrodynamics in quantum optics. Here the role of the atom is played by a Cooper pair box (CPB), and the cavity is replaced by a transmission line resonator. This combined qubit-resonator system, though its size is much larger than a real atom, still gives us several revelations about fundamental quantum physics.; Due to the interaction between the Cooper pair box and the resonator photon field, their properties both change to reflect each other's character. Like an atom, the CPB aquires a Lamb shift to its own energy splitting, and the resonator changes its frequency based on the state of the CPB. The latter is especially important, because by taking advantage of this feature we can devise readout schemes that do not perturb the CPB. Since the CPB is practically hidden inside the resonator, the shielding could potentially lead to an enhancement of the qubit lifetime.; Quantum computation requires at least stages of control, operation, and readout. We show that even though the qubit is hidden inside the resonator, we can still control it with standard NMR techniques using microwaves. Furthermore, the resonator itself may also serve as a medium for communicating among multiple qubits and facilitating quantum operations. Therefore, this system, if realized in the experiments, could be a promising candidate for the basic structure of a quantum computer in the future.
机译:量子计算的最新发展激发了许多领域的有趣观点。令人惊讶的是,即使是具有非常不同形式的系统也可以在许多方面彼此相似,这是令人惊讶的,但也并不令人惊讶。在我们对固态介观系统的研究中,我们发现它具有许多与量子光学中腔量子电动力学中所见特征相似的特征。在这里,原子的作用由库珀对盒(CPB)承担,而空腔由传输线谐振器代替。这个组合的量子比特谐振器系统,尽管它的大小比真实原子大得多,但仍给我们一些有关基本量子物理学的启示。由于库珀对盒和共振器光子场之间的相互作用,它们的特性都发生变化以反映彼此的特征。像原子一样,CPB会获得一个Lamb位移到其自身的能量分裂,并且谐振器会根据CPB的状态更改其频率。后者尤其重要,因为通过利用此功能,我们可以设计出不会干扰CPB的读出方案。由于CPB实际上隐藏在谐振器内部,因此屏蔽可能会导致qubit寿命的延长。量子计算至少需要控制,操作和读出阶段。我们表明,即使量子位隐藏在谐振器内部,我们仍然可以使用微波通过标准NMR技术对其进行控制。此外,谐振器本身也可以用作在多个量子位之间进行通信并促进量子运算的介质。因此,如果在实验中实现,则该系统将来可能成为量子计算机基本结构的有希望的候选者。

著录项

  • 作者

    Huang, Ren-Shou.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 65 p.
  • 总页数 65
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号