首页> 外文学位 >Identification of emergent off-nominal operational requirements during conceptual architecting of the more electric aircraft.
【24h】

Identification of emergent off-nominal operational requirements during conceptual architecting of the more electric aircraft.

机译:在更多的电动飞机的概念​​设计过程中,确定紧急的名义上的运行要求。

获取原文
获取原文并翻译 | 示例

摘要

Increases in power demands and changes in the design practices of overall equipment manufacturers has led to a new paradigm in vehicle systems definition. The development of unique power systems architectures is of increasing importance to overall platform feasibility and must be pursued early in the aircraft design process. Many vehicle systems architecture trades must be conducted concurrent to platform definition. With an increased complexity introduced during conceptual design, accurate predictions of unit level sizing requirements must be made. Architecture specific emergent requirements must be identified which arise due to the complex integrated effect of unit behaviors.;Off-nominal operating scenarios present sizing critical requirements to the aircraft vehicle systems. These requirements are architecture specific and emergent. Standard heuristically defined failure mitigation is sufficient for sizing traditional and evolutionary architectures. However, architecture concepts which vary significantly in terms of structure and composition require that unique failure mitigation strategies be defined for accurate estimations of unit level requirements.;Identifying of these off-nominal emergent operational requirements require extensions to traditional safety and reliability tools and the systematic identification of optimal performance degradation strategies. Discrete operational constraints posed by traditional Functional Hazard Assessment (FHA) are replaced by continuous relationships between function loss and operational hazard. These relationships pose the objective function for hazard minimization. Load shedding optimization is performed for all statistically significant failures by varying the allocation of functional capability throughout the vehicle systems architecture.;Expressing hazards, and thereby, reliability requirements as continuous relationships with the magnitude and duration of functional failure requires augmentations to the traditional means for system safety assessment (SSA). The traditional two state and discrete system reliability assessment proves insufficient. Reliability is, therefore, handled in an analog fashion: as a function of magnitude of failure and failure duration. A series of metrics are introduced which characterize system performance in terms of analog hazard probabilities. These include analog and cumulative system and functional risk, hazard correlation, and extensions to the traditional component importance metrics.;Continuous FHA, load shedding optimization, and analog SSA constitute the SONOMA process (Systematic Off-Nominal Requirements Analysis). Analog system safety metrics inform both architecture optimization (changes in unit level capability and reliability) and architecture augmentation (changes in architecture structure and composition). This process was applied for two vehicle systems concepts (conventional and 'more-electric') in terms of loss/hazard relationships with varying degrees of fidelity.;Application of this process shows that the traditional assumptions regarding the structure of the function loss vs. hazard relationship apply undue design bias to functions and components during exploratory design. This bias is illustrated in terms of inaccurate estimations of the system and function level risk and unit level importance. It was also shown that off-nominal emergent requirements must be defined specific to each architecture concept. Quantitative comparisons of architecture specific off-nominal performance were obtained which provide evidence to the need for accurate definition of load shedding strategies during architecture exploratory design.;Formally expressing performance degradation strategies in terms of the minimization of a continuous hazard space enhances the system architects ability to accurately predict sizing critical emergent requirements concurrent to architecture definition. Furthermore, the methods and frameworks generated here provide a structured and flexible means for eliciting these architecture specific requirements during the performance of architecture trades.
机译:功率需求的增加和整个设备制造商的设计方法的变化导致了车辆系统定义的新范例。独特动力系统架构的开发对于整个平台的可行性越来越重要,必须在飞机设计过程的早期进行。许多车辆系统架构交易必须与平台定义同时进行。随着概念设计期间引入的复杂性增加,必须对单元级别的大小要求进行准确的预测。必须识别由于单元行为的复杂综合影响而产生的特定于体系结构的紧急需求。;非标称运行场景提出了对飞机系统的关键需求。这些要求是特定于体系结构的并且是紧急的。标准的启发式定义的故障缓解措施足以确定传统和演进式体系结构的大小。但是,在结构和组成方面差异很大的体系结构概念要求定义独特的故障缓解策略,以准确估算单元级别的要求。要识别这些非标称的紧急运行要求,需要扩展传统的安全性和可靠性工具以及系统确定最佳性能降低策略。传统功能危害评估(FHA)造成的离散操作约束被功能丧失与操作危害之间的连续关系所取代。这些关系构成了将危害最小化的目标功能。通过改变整个车辆系统架构中功能能力的分配,对所有具有统计意义的故障执行减载优化。表达危险,并因此将可靠性要求与功能性故障的程度和持续时间保持连续关系,需要对传统方法进行扩充系统安全评估(SSA)。传统的两种状态和离散系统可靠性评估被证明是不够的。因此,以模拟方式处理可靠性:作为故障幅度和故障持续时间的函数。引入了一系列度量,这些度量根据模拟危险概率来表征系统性能。这些包括模拟和累积的系统和功能风险,危害关联以及对传统组件重要性指标的扩展。连续的FHA,减载优化和模拟SSA构成了SONOMA流程(系统性名义外需求分析)。模拟系统安全度量既可以通知架构优化(单位级别功能和可靠性的变化),又可以通知架构扩展(架构结构和组成的更改)。就损失/危险关系以及不同保真度而言,此过程应用于两个车辆系统概念(常规和“更多电气”)。该过程的应用表明,关于功能损失与结构的传统假设。危险关系在探索性设计过程中会对功能和组件施加不必要的设计偏见。此偏差是根据对系统和功能级别风险以及单元级别重要性的不正确估计来说明的。还表明,必须针对每个体系结构概念定义非标称的紧急需求。获得了特定于架构的非标称性能的定量比较,这为在架构探索性设计期间准确定义减载策略的需求提供了证据。;以最小化连续危险空间的形式正式表示性能下降策略,增强了系统架构师的能力准确预测与架构定义同时发生的关键紧急需求的大小。此外,此处生成的方法和框架提供了一种结构化且灵活的方法,用于在执行架构交易期间引发这些特定于架构的需求。

著录项

  • 作者

    Armstrong, Michael James.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 432 p.
  • 总页数 432
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号