首页> 外文学位 >Direct measurement of mammalian axonemal dynein's motor activity.
【24h】

Direct measurement of mammalian axonemal dynein's motor activity.

机译:直接测量哺乳动物的轴突动力蛋白的活动。

获取原文
获取原文并翻译 | 示例

摘要

Flagella and cilia play critical roles in mammalian and other eukaryotic life by providing propulsion for swimming cells and moving fluids across tissue surfaces. Flagellar/ciliary bending is caused by the sliding of doublet microtubules (MTs) past each other due to a molecular motor called dynein attached to one doublet MT (dMT) "walking" along an adjacent dMT. Due to dMTs being fixed at the same end, this translocation produces a bend in the whole structure. While it is clear how the dynein molecules cause a bending of the dMTs, the mechanism underlying the generation of propagated waves of flagellar/ciliary motion has yet to be fully understood, especially with regard to the magnitude and regulation of the forces produced by dynein. Several outside studies have shown that some of dynein's mechanical properties such as velocity of MT gliding and force generation seem to be regulated by its multiple nucleotide binding sites. To better understand dynein's role in coordinated flagellar motion, we developed two in situ assays: one in which polymerized MTs glide along dMTs extruded from disintegrated bovine sperm flagella and an optical tweezers assay which is identical in geometry and environment except the MT is held in an optical trap to measure displacements and forces rather than velocities. The exposed, active dynein in each assay remain attached to their respective dMTs, allowing translocation of single MTs to be observed in an environment with direct control of chemical conditions. In the gliding assay, translocation of MTs by dynein exhibits Michaelis-Menten type kinetics, with Vmax = 4.7 +/- 0.2 mum/sec and Km = 124 +/- 11 muM. The character of MT translocation is variable, including smooth gliding, stuttered motility, oscillations, buckling, complete dissociation from the dMT, and occasionally movements reversed from the physiologic direction. The gliding velocity is independent of the number of dynein motors present and shows no indication of increased activity due to ADP regulation. In the optical tweezers assay, average force was found to be independent of [ATP] and [ADP] and distances of dynein's excursions indicates non-processivity. These combined results reveal dynein's motor activity, individually and cooperatively, within mammalian flagella.
机译:鞭毛和纤毛通过提供游动细胞和在组织表面移动液体的推动力,在哺乳动物和其他真核生物中起着至关重要的作用。鞭毛/睫状体弯曲是由于双联体微管(MTs)彼此滑行而引起的,这是由于分子动力蛋白(dynein)附着在一个双联体MT(dMT)上沿相邻dMT的“行走”。由于dMT固定在同一端,因此这种移位会在整个结构中产生弯曲。尽管很明显动力蛋白分子是如何引起dMTs弯曲的,但鞭毛/纤毛运动传播波产生的机理尚未完全弄清,特别是在动力蛋白的大小和调节方面。外部的一些研究表明,动力蛋白的某些机械性能,例如MT滑行的速度和力的产生似乎受其多个核苷酸结合位点的调节。为了更好地了解达因在协调鞭毛运动中的作用,我们开发了两种原位测定:一种是将聚合MTs沿着从崩解的牛精子鞭毛中挤出的dMT滑动,另一种是在几何形状和环境上相同的光学镊子测定,只是MT被保存在光学陷阱来测量位移和力而不是速度。在每种测定中,暴露的活性达因保持与各自的dMT保持连接,从而可以在直接控制化学条件的环境中观察到单个MT的移位。在滑动试验中,动力蛋白通过MT的易位表现出Michaelis-Menten型动力学,Vmax = 4.7 +/- 0.2 mum / sec,Km = 124 +/- 11μM。 MT易位的特性是可变的,包括平稳的滑行,结巴的运动性,振荡,屈曲,与dMT的完全分离以及偶尔从生理方向反转的运动。滑行速度与存在的达因电机的数量无关,并且没有迹象表明由于ADP调节而增加了活动。在光学镊子测定中,发现平均力独立于[ATP]和[ADP],并且动力蛋白的偏移距离表示非加工性。这些综合的结果揭示了在哺乳动物鞭毛内单独和合作的达因的运动活动。

著录项

  • 作者

    Lorch, David P.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 6 p.
  • 总页数 6
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号