首页> 外文学位 >Miniaturized Antennas and Metamaterial-Based Transmission Line Components in Microwave Circuits Applications.
【24h】

Miniaturized Antennas and Metamaterial-Based Transmission Line Components in Microwave Circuits Applications.

机译:微波电路应用中的微型天线和基于超材料的传输线组件。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents two diversities of miniaturization approaches to the antennas and microwave passive circuit components. The first approach is based on the unique metamaterial transmission line structures. The metamaterial structure or the left-handed structure is an artificial structure that is dispersion engineerable from its constituent parameters. By means of the left-handed transmission lines or the composite right/left-handed (CRLH) transmission lines to replace the conventional microstrip lines, microwave circuit components can be miniaturized via controlling the phase responses at the frequencies of interest, which saves the footprint size. Specifically, this idea was implemented on the dual-band 180°0 and 90° hybrid couplers and both of them demonstrate considerable size reductions in the experiments. On the other hand, the second methodology leading to miniaturization is taking advantage of the slow wave structures. The slow wave structures presented in this dissertation are formed using the capacitive loading periodically. The effective propagation constant beta is enhanced by increasing the effective shunt capacitance in the equivalent circuit model derived from the conventional transmission line theory. The associated guided wavelength is therefore decreased and the same physical structure is capable of operating at lower frequencies. The slow wave structures are employed for compact antenna applications. In particular, the slow wave enhancement factor (SWE), which is defined as the ratio of the loaded to the unloaded propagation constants (beta//beta), is investigated using the loaded unit cell of the equivalent transmission line model and utilized as a design tool for an arbitrary size reduction. It is shown that the SWE agrees very well with miniaturization factor, and therefore load parameters in the circuit model can be readily obtained when a specific size reduction is attempted. Slow wave antennas will be exemplified in the third chapter in this dissertation.;The subject of the second chapter is CRLH-based and miniaturized dual-band hybrid couplers (both the 180° and 90° couplers) and their applications in beam pattern diversity systems as well as to microwave diplexers. To ensure compactness, all possible phase solutions of the CRLH-based transmission lines, which comprise the couplers, are considered and compared in terms of the physical length. This design methodology will be elaborated and given in the second chapter. The focus of the remaining chapter will be the applications of the CRLH-based dual-band couplers as the mode decoupling networks (MDNs) in the beam pattern diversity systems to demonstrate antenna pattern diversity in dual bands, and as the building elements of the microwave diplexers.;The subject of the third chapter is the compact antennas based on the slow wave structures developed by periodically capacitive loading. In this chapter, the design principle of the slow wave antenna with an arbitrary size reduction is proposed by taking advantage of the SWE, which is shown to be equivalent to the miniaturization factor. Two small radiators, the high-frequency (HF) slot-loop antenna and planar inverted F antenna (PIFA), are examples to achieve the desired size reductions. Furthermore, the adverse effects on the impedance bandwidth (VSWR≤2) and radiation efficiency from miniaturization are discussed and improved subsequently. A compact impedance matching circuit derived from the filter design techniques is proposed to alleviate the narrow impedance bandwidth to a degree. By the same token, antennas employing varactor diodes are able to attempt desired size reductions while exhibiting considerable effective bandwidths across the tunable frequency range. A varactor-loaded slot-loop antenna was implemented to illustrate this idea.
机译:本文提出了天线和微波无源电路组件的两种小型化方法。第一种方法基于独特的超材料传输线结构。超材料结构或左手结构是可从其组成参数进行分散工程化的人造结构。通过用左手传输线或右/左手复合(CRLH)传输线代替常规的微带线,可以通过控制感兴趣频率下的相位响应来使微波电路组件小型化,从而节省了占地面积尺寸。具体来说,这个想法是在180°0和90°双频混合耦合器上实现的,并且在实验中都显示出相当大的尺寸减小。另一方面,导致小型化的第二种方法是利用慢波结构。本文所介绍的慢波结构是利用电容性负载周期性形成的。通过增加从传统传输线理论推导出的等效电路模型中的有效并联电容,可以提高有效传播常数β。因此,减小了相关的引导波长,并且相同的物理结构能够在较低的频率下工作。慢波结构用于紧凑型天线应用。特别是,慢波增强因子(SWE)(定义为有载与无载传播常数的比率(beta // beta))是使用等效传输线模型的有载单元进行研究的,并用作设计工具可任意减小尺寸。结果表明,SWE与小型化系数非常吻合,因此,当尝试减小尺寸时,可以轻松获得电路模型中的负载参数。本文的第三章将以慢波天线为例。第二章的主题是基于CRLH的小型化双频混合耦合器(180°和90°耦合器)及其在波束方向图分集系统中的应用以及微波双工器。为了确保紧凑性,考虑并比较了包括耦合器的基于CRLH的传输线的所有可能的相位解,并根据物理长度进行了比较。这种设计方法将在第二章中详细阐述。其余章节的重点将是基于CRLH的双频带耦合器在波束方向图分集系统中的模式解耦网络(MDN)的应用,以演示双频带中的天线方向图分集,以及作为微波的构建元素。第三章的主题是基于周期性电容性负载产生的慢波结构的紧凑型天线。在本章中,通过利用SWE提出了任意减小尺寸的慢波天线的设计原理,该设计原理等效于小型化系数。为了实现所需的尺寸减小,示例有两个小型辐射器,即高频(HF)缝隙环形天线和平面倒F天线(PIFA)。此外,讨论并缩小了对阻抗带宽(VSWR≤2)和辐射效率的不利影响。提出了一种源自滤波器设计技术的紧凑型阻抗匹配电路,以在一定程度上缓解窄阻抗带宽。同样,采用变容二极管的天线能够尝试减小尺寸,同时在整个可调频率范围内展现出相当大的有效带宽。实现了变容二极管加载的缝隙环形天线来说明这一想法。

著录项

  • 作者

    Chi, Pei-Ling.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号