首页> 外文学位 >Accuracy enhancement techniques in low-voltage high-speed pipelined ADC design.
【24h】

Accuracy enhancement techniques in low-voltage high-speed pipelined ADC design.

机译:低压高速流水线ADC设计中的精度增强技术。

获取原文
获取原文并翻译 | 示例

摘要

Pipelined analog to digital converters (ADCs) are very important building blocks in many electronic systems such as high quality video systems, high performance digital communication systems and high speed data acquisition systems. The rapid development of these applications is driving the design of pipeline ADCs towards higher speed, higher dynamic range, lower power consumption and lower power supply voltage with the CMOS technology scaling. This trend poses great challenges to conventional pipelined ADC designs which rely on high-gain operational amplifiers (opamps) and well matched capacitors to achieve high accuracy.; In this thesis, two novel accuracy improvement techniques to overcome the accuracy limit set by analog building blocks (opamps and capacitors) in the context of low-voltage and high-speed pipelined ADC design are presented. One is the time-shifted correlated double sampling (CDS) technique which addresses the finite opamp gain effect and the other is the radix-based background digital calibration technique which can take care of both finite opamp gain and capacitor mismatch. These methods are simple, easy to implement and power efficient. The effectiveness of the proposed techniques is demonstrated in simulation as well as in experiment.; Two prototype ADCs have been designed and fabricated in 0.18μm CMOS technology as the experimental verification of the proposed techniques. The first ADC is a 1.8V 10-bit pipeline ADC which incorporated the time-shifted CDS technique to boost the effective gain of the amplifiers. Much better gain-bandwidth tradeoff in amplifier design is achieved with this gain boosting. Measurement results show total power consumption of 67mW at 1.8V when operating at 100MSPS. The SNR, SNDR and SFDR are 55dB, 54dB and 65dB respectively given a 1MHz input signal. The second one is a 0.9V 12-bit two-stage cyclic ADC which employed a novel correlation-based background calibration to enhance the linearity. The linearity limit set by the capacitor mismatches, finite opamp gain effects is exceeded. After calibration, the SFDR is improved by about 33dB and exceeds 80dB. The power consumption is 12mW from 0.9V supply when operating at 2MSPS.
机译:在许多电子系统中,例如高质量视频系统,高性能数字通信系统和高速数据采集系统,流水线式模数转换器(ADC)是非常重要的组成部分。这些应用的快速发展正在推动流水线ADC的设计朝着更高速度,更高动态范围,更低功耗和更低电源电压的方向发展,并采用了CMOS技术。这种趋势对传统的流水线ADC设计提出了巨大的挑战,传统的流水线ADC设计依靠高增益运算放大器(opamps)和匹配良好的电容器来实现高精度。本文提出了两种新颖的精度改进技术,以克服低压和高速流水线ADC设计背景下模拟构建块(运算放大器和电容器)设定的精度极限。一种是时移相关双采样(CDS)技术,该技术解决了有限的运算放大器增益效应,另一种是基于基数的背景数字校准技术,可以同时处理有限的运算放大器增益和电容器不匹配。这些方法简单,易于实施且具有高能效。仿真和实验证明了所提出技术的有效性。已经设计并使用0.18μmCMOS技术制造了两个原型ADC,作为对所提出技术的实验验证。第一个ADC是一个1.8V 10位流水线ADC,该ADC集成了时移CDS技术以提高放大器的有效增益。通过这种增益提升,可以在放大器设计中实现更好的增益带宽折衷。测量结果显示,以100MSPS工作时,1.8V时的总功耗为67mW。给定1MHz输入信号,SNR,SNDR和SFDR分别为55dB,54dB和65dB。第二个是0.9V 12位两级循环ADC,它采用了一种新颖的基于相关性的背景校准来提高线性度。由电容器不匹配设置的线性极限,超出了有限的运算放大器增益效应。校准后,SFDR改善了约33dB,超过了80dB。以2MSPS工作时,0.9V电源的功耗为12mW。

著录项

  • 作者

    Li, Jipeng.;

  • 作者单位

    Oregon State University.;

  • 授予单位 Oregon State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号