首页> 外文学位 >Plasmonics of nanostructures in planar geometries.
【24h】

Plasmonics of nanostructures in planar geometries.

机译:平面几何结构中的纳米结构的等离子体。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents an experimental and theoretical study of the optical properties for two distinct planer metallic structures: metallodielectric gratings with subwavelength slots and metal nanoshells above a conducting plane. For metallodielectric gratings, two types of anomalies are present in the spectra: an edge anomaly associated with the Rayleigh wavelength, and a resonant anomaly associated with the excitations of surface plasmons. The zeroth-order transmission and reflection were measured to determine the spectral location of these anomalies and their dispersion relationships. The experimental data is compared to theoretical curves calculated using a surface impedance boundary condition approximation. The surface plasmons exhibit an energy gap in their dispersion, which is sensitive to the dielectric properties of the surrounding media. The surrounding media is changed by attaching a second grating to form a crossed grating structure, submerging the gratings in a variety of solvents, or chemically functionalizing the grating. In the first two cases, the plasmon dispersion is shifted to lower energies, the plasmon travel at a slower group velocity, and smaller energy gap is measured. The response of the plasmon dispersion to chemical functionalization is identical, except that the energy gap is increased. The difference in this trend is explained by comparing plasmons traveling on periodic structures to electrons traveling in a periodic potential.; The optical properties of metal nanoshells above a conducting plane are also investigated. When a nanoshell is positioned close to a conducting plane, the surface electrons of the plane will arrange themselves to mimic the electromagnetic field of the nanoshell and its mirror image. This interaction between a nanoshell and its image plasmon approximates a nanoshell dimmer. Transmission spectra are measured as a function of the angle of polarization and compared to the expected spectra of a nanoshell dimer. The thickness of the conducting plane is also varied, which leads to a blue shift in the plasmon resonances. This shift in energy is qualitatively explained by explained using a plasmon hybridization model.
机译:本文提出了两种不同的平面金属结构的光学性质的实验和理论研究:具有亚波长缝隙的金属电介质光栅和在导电平面上方的金属纳米壳。对于金属电介质光栅,光谱中存在两种类型的异常:与瑞利波长相关的边缘异常,以及与表面等离子体激元的激发相关的共振异常。测量零阶透射和反射以确定这些异常的光谱位置及其色散关系。将实验数据与使用表面阻抗边界条件近似计算得出的理论曲线进行比较。表面等离子体激元在其分散中显示出能隙,该能隙对周围介质的介电性质敏感。通过连接第二个光栅以形成交叉的光栅结构,将光栅浸没在各种溶剂中或对光栅进行化学功能化,可以更改周围的介质。在前两种情况下,等离激元的色散转移到较低的能量,等离激元以较慢的群速度行进,并且能隙较小。等离子体激元分散体对化学功能化的响应是相同的,除了能隙增加。通过比较在周期性结构上传播的等离激元与在周期性电势中传播的电子,可以解释这种趋势的差异。还研究了导电平面上方的金属纳米壳的光学性质。当纳米壳靠近导电平面放置时,该平面的表面电子将自行排列以模仿纳米壳的电磁场及其镜像。纳米壳及其图像等离子体激元之间的这种相互作用近似于纳米壳调光器。透射光谱作为极化角的函数进行测量,并与纳米壳二聚体的预期光谱进行比较。导电平面的厚度也变化,这导致等离子体激元共振的蓝移。通过使用等离激元杂交模型进行解释,定性地解释了这种能量转移。

著录项

  • 作者

    Steele, Jennifer Marie.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Physics Optics.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 72 p.
  • 总页数 72
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号