首页> 外文学位 >Gas flow and heat transfer in microchannels: An experimental investigation of compressibility, rarefaction, and surface roughness.
【24h】

Gas flow and heat transfer in microchannels: An experimental investigation of compressibility, rarefaction, and surface roughness.

机译:微通道中的气流和传热:可压缩性,稀疏性和表面粗糙度的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents an experimental investigation of laminar gas flow and heat transfer through microchannels. The independent variables: relative surface roughness, Knudsen number, Reynolds number and Mach number were systematically varied to determine their influence on the friction factor and the Nusselt number. The microchannels were etched into silicon wafers, capped with glass, and have hydraulic diameters between 5 and 96 microns. Isothermal gas flow was investigated by measuring the local pressure at seven locations along the channel length. Heat transfer experiments were conducted using thin film sensors developed for direct measurement of the surface temperature.; Eight microchannel test sections were fabricated for flow tests; five with smooth surfaces, three with rough surfaces. Local values of Knudsen number, Mach number and friction factor were determined for laminar gas flow with Reynolds numbers ranging from 0.1 to 1000. The results show agreement within 3% for the friction factor in the limiting case of low Ma and low Kn with the incompressible continuum flow theory. The effect of compressibility is observed to have a mild (8%) increase in the friction factor as Ma approaches 0.35. A 50% decrease in the friction factor was seen as Kn was increased to 0.27. Finally, the influence of surface roughness on the friction factor was shown to be insignificant for both continuum and slip flow regimes.; Heat transfer experiments were conducted in the laminar flow regime with the outlet Ma between 0.10 and 0.42. The experimental measurements of inlet and outlet gas temperature and the microchannel wall temperature were used to validate a computational model. The model was then used to determine local values of Ma, Re, and Nu. The model results show that after the entrance region, Nu approaches 8.23, the fully developed value of Nu for incompressible flow with constant heat flux. Then, the model predicts that Nu increases along the channel length as Re and Ma increase.
机译:本文提出了层流和微通道传热的实验研究。系统地改变了独立变量:相对表面粗糙度,克努森数,雷诺数和马赫数,以确定它们对摩擦系数和努塞尔数的影响。将微通道蚀刻到硅晶片中,盖上玻璃,并在5至96微米之间形成水力直径。通过测量沿通道长度的七个位置的局部压力来研究等温气流。使用开发用于直接测量表面温度的薄膜传感器进行传热实验。制作了八个微通道测试部分用于流量测试。五个表面光滑,三个表面粗糙。确定层流气流的克努森数,马赫数和摩擦系数的局部值,雷诺数在0.1到1000之间。结果表明,在低 Ma 和低 Kn 的不可压缩连续流理论。当 Ma 接近0.35时,可压缩性的影响使摩擦系数有轻微的增加(8%)。摩擦系数降低了50%,这是因为 Kn 增加到0.27。最后,对于连续流和滑移流态,表面粗糙度对摩擦系数的影响均显示为无关紧要。在层流状态下进行传热实验,出口 Ma 在0.10和0.42之间。入口和出口气体温度以及微通道壁温度的实验测量值被用于验证计算模型。然后使用该模型确定 Ma,Re, Nu 的局部值。模型结果表明,在进入区域后, Nu 接近于恒定热通量不可压缩流的 Nu 的完全展开值。然后,该模型预测 Nu 随着 Re Ma 的增加沿通道长度增加。

著录项

  • 作者

    Turner, Stephen Edward.;

  • 作者单位

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号