首页> 外文学位 >Role of neuronal nitric oxide in neuroplasticity-associated protein expression.
【24h】

Role of neuronal nitric oxide in neuroplasticity-associated protein expression.

机译:神经元一氧化氮在神经可塑性相关蛋白表达中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Experience-induced alterations in neural activity can elicit long-lasting modifications in synaptic structure and transmission. By allowing neurons to respond and adapt to a changing environment, certain forms of neuroplasticity may underlie various important brain processes, including learning and memory. Because aging and aging-related disorders are characterized by a decline in cognitive function linked to early impairments in synaptic plasticity, it is imperative to elucidate the underlying mechanisms. Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) in response to N-methyl-D-aspartate (NMDA) receptor activation has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the MAPK/ERK signaling pathway and gene expression. To address this issue we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc and brain derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase PKG reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of CREB, a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS4-/- mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect involving cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation, but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity, while providing new insight on different targets of potential therapeutic value for neurological conditions characterized by alterations in neuroplasticity mechanisms.
机译:经验引起的神经活动改变可引起突触结构和传递的长期改变。通过让神经元做出反应并适应不断变化的环境,某些形式的神经可塑性可能成为各种重要的大脑过程的基础,包括学习和记忆。由于衰老和与衰老相关的疾病的特征是认知功能下降与突触可塑性的早期损伤有关,因此必须阐明其潜在机制。长期以来,由神经元一氧化氮合酶(nNOS)响应N-甲基-D-天冬氨酸(NMDA)受体激活而合成的一氧化氮(NO)与大脑可塑性有关。但是,尚不清楚这种短暂的介体如何促进神经可塑性下的长期分子变化,这通常需要激活MAPK / ERK信号通路和基因表达。为了解决这个问题,我们使用了基于神经营养的模型,该模型基于用双小分子对神经元培养物的处理以及桶皮质中经验依赖的可塑性模型。在神经元文化中,NOS抑制作用减弱了双小分子诱导的ERK激活以及c-Fos,Egr-1,Arc和脑源性神经营养因子(BDNF)的表达,而神经营养因子是必需的蛋白质。此外,对NO目标可溶性鸟苷基环化酶或cGMP效应激酶PKG的抑制作用会降低ERK激活和可塑性相关蛋白的表达。 NOS抑制不会影响CREB(一个公认的ERK核靶标)的磷酸化,但会减弱CREB共激活剂TORC1的核积累并抑制ERK的另一个转录因子靶标Elk-1的激活。与这些体外观察结果一致,在经历单晶须经历的nNOS4-/-小鼠的D1皮质桶中,对c-Fos,Egr-1和BDNF的诱导减弱。这些结果将nNOS衍生的NO确立为涉及神经可塑性的蛋白质表达的关键因素,这种效应涉及cGMP,PKG和ERK信号传导。这些NO的作用不依赖于CREB的磷酸化,但可能涉及TORC1和Elk-1。我们的数据揭示了神经元NO和负责神经可塑性的持续突触变化的分子机制之间的先前未被认识的联系,同时为以神经可塑性机制改变为特征的神经系统疾病的潜在治疗价值的不同靶标提供了新见解。

著录项

  • 作者

    Gallo, Eduardo Francisco.;

  • 作者单位

    Weill Medical College of Cornell University.;

  • 授予单位 Weill Medical College of Cornell University.;
  • 学科 Biology Neuroscience.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号