首页> 外文学位 >Using electronic tagging data to estimate movement, identify habitat, and characterize behavior of marine pelagic predators.
【24h】

Using electronic tagging data to estimate movement, identify habitat, and characterize behavior of marine pelagic predators.

机译:使用电子标签数据来估计运动,识别栖息地并表征海洋中上层捕食者的行为。

获取原文
获取原文并翻译 | 示例

摘要

Electronic tagging has fundamentally changed our understanding of the lives of marine animals from tunas, turtles to squids in the past decade. For the very first time, we are able to collect detailed data from the animals as they conduct their lives in the ocean for months to, sometimes, years. An electronic tag is like a paparazzi's camera, and our star celebrity is the animal. Unlike the vastly popular reality TV shows, lives of these animals are unscripted and challenge us to decipher the underlying mechanisms and motivations for doing what they do. In this thesis, I take a life history approach to present the aspects of lives from two species, great white shark (Carcharodon carcharias) and striped marlin (Kajikia audax) that we have learnt through electronic tagging. Akin to our actions as human in planning out our lifetime goals (e.g. get a Ph.D., build a career/ family) and daily plans (e.g. prepare a dinner menu), a pelagic animal's life in the ocean has both aspects intertwined, but rarely revealed themselves to us scientists. A better understanding of this interplay will allow us to appreciate biology, and ultimately to provide potential solutions for management and conservation.;Highlights of this thesis are outlined as follows: (1) Satellite sea-surface temperature products are effective in improving geoposition estimates of tracks derived from satellite tags. Low-resolution products (> 1º in longitude and latitude) offer an optimal solution, balancing the trade-offs between the amount of details and computational performance. (2) White sharks were shown to perform frequent, continuous oscillatory dives between the surface and 400 meters throughout day and night in the offshore eastern Pacific Ocean (around 130--140 °W and 25--30 °N). Their bottom activities appeared to be confined by the concentration of dissolved oxygen at 2 ml/L. (3) When white sharks aggregated around Guadalupe Island, vertical movement of the sharks shows marked changes in depth and temperature distribution seasonally. Such seasonal changes corresponded to changes in the foraging dynamics around the island and in particular, related to the life history traits of seal populations that share the island habitat. (4) Striped marlin throughout the Pacific is an epipelagic species, spending at least 50% of time at the surface between 0--10 m. Despite this majority of time spent near the surface, striped marlin exhibited a variety of diving patterns, utilizing mid-water boundary conditions created by the mixed layer and the oxycline. Our results showed partitioning of maximum depths between western and eastern Pacific Ocean in accordance to dissolved oxygen levels, where the Eastern Pacific Ocean has a permanent oxygen minimum zone. Within a particular region, the swimming depths are likely to be limited by the interplay of oceanographic, biological and physiological conditions. (5) An individual-based limiting factor diving model is developed to relate the vertical movements recorded by a tag to potential biological functions, predator-prey interactions and water column features. Dynamics of vertical migration of prey (zooplankton) and predator (fish) are modeled as a function of efficiency of fish hunting by sight and provided predictions for observed data, such as peak predation activities by fish during sunrise and sunset. Enhanced diving by striped marlin during twilight, suggestive of hunting activities, were observed across various regions of the Pacific Ocean and support the model predictions. Using this model, I constructed a nested framework with key interacting layers in the water column, which can be used to understand striped marlin swimming patterns in the appropriate biological and environmental context.
机译:在过去的十年中,电子标签从根本上改变了我们对海洋生物的了解,从金枪鱼,乌龟到鱿鱼。我们第一次能够从动物那里收集详细的数据,因为它们在海洋中生活了几个月甚至几年。电子标签就像狗仔队的照相机,而我们的明星名人就是动物。与广受欢迎的真人秀不同,这些动物的生活是不受脚本约束的,并向我们挑战,以挑战其做事的基本机制和动机。在本文中,我将采用一种生活史方法来介绍我们通过电子标记学到的两种物种(大白鲨(Carcharodon carcharias)和条纹马林鱼(Kajikia audax))的生活状况。就像我们在规划人生目标(例如获得博士学位,建立职业/家庭)和日常计划(例如准备晚餐菜单)中作为人类的行为一样,远洋动物在海洋中的生活交织在一起,但很少向我们的科学家展示自己。更好地理解这种相互作用将使我们认识生物学,并最终为管理和保护提供潜在的解决方案。本论文的要点概述如下:(1)卫星海面温度产品有效地改善了海平面的地理估计。来自卫星标签的轨道。低分辨率产品(经度和纬度>1º)提供了一种最佳解决方案,可以在细节量和计算性能之间进行权衡。 (2)据显示,白鲨在东太平洋近海(约130--140°W和25--30°N)昼夜之间在水面和400米之间进行频繁,连续的振荡潜水。它们的底部活性似乎受<2 ml / L的溶解氧浓度的限制。 (3)当白色鲨鱼聚集在瓜达卢佩岛附近时,鲨鱼的垂直运动表明其深度和温度分布随季节发生明显变化。这种季节性变化对应于岛屿周围觅食动态的变化,特别是与共享岛屿栖息地的海豹种群的生活史特征有关。 (4)整个太平洋上的条纹马林鱼是上层鱼类,在地表0--10 m之间花费至少50%的时间。尽管在表层附近花费了大部分时间,但条纹马林鱼却利用混合层和奥克斯康林产生的中水边界条件表现出多种潜水模式。我们的结果表明,根据溶解氧水平,在西太平洋和东太平洋之间划分最大深度,而东太平洋具有一个永久性的最小氧气区。在特定区域内,游泳深度可能会受到海洋,生物学和生理条件相互作用的限制。 (5)建立了基于个体的限制因素潜水模型,以将标签记录的垂直运动与潜在的生物学功能,捕食者-猎物相互作用和水柱特征联系起来。猎物(浮游动物)和捕食者(鱼)的垂直迁移动力学被建模为视线捕捞效率的函数,并为观测数据提供了预测,例如日出和日落时鱼的峰值捕食活动。在太平洋的各个地区都观察到了条纹马林鱼在黄昏时的增强潜水,暗示了狩猎活动,并支持了模型预测。使用此模型,我构建了一个嵌套的框架,在水栏中包含关键的交互层,可用于了解适当的生物和环境背景下的条纹马林鱼游泳模式。

著录项

  • 作者

    Lam, Chi Hin.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Biology Ecology.;Agriculture Fisheries and Aquaculture.;Biology Oceanography.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 387 p.
  • 总页数 387
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号