首页> 外文学位 >Network Structures Arising from Spike-Timing Dependent Plasticity.
【24h】

Network Structures Arising from Spike-Timing Dependent Plasticity.

机译:依赖于峰值计时的可塑性产生的网络结构。

获取原文
获取原文并翻译 | 示例

摘要

Spike-timing dependent plasticity (STDP), a widespread synaptic modification mechanism, is sensitive to correlations between presynaptic spike trains, and organizes neural circuits in functionally useful ways. In this dissertation, I study the structures arising from STDP in a population of synapses with an emphasis on the interplay between synaptic stability and Hebbian competition, explained in Chapter 1. Starting from the simplest description of STDP which relates synaptic modification to the intervals between pairs of pre- and postsynaptic spikes, I show in Chapter 2 that stability and Hebbian competition are incompatible in this class of "pair-based" STDP models, either when hard bounds or soft bounds are imposed to the synapses. In chapter 3, I propose an alternative biophysically inspired method for imposing bounds to synapses, i.e. introducing a small temporal shift in the STDP window. Shifted STDP overcomes the incompatibility of synaptic stability and competition and can implement both Hebbian and anti-Hebbian forms of competitive plasticity.;In light of experiments the explored a variety of spike patterns, STDP models have been augmented to account for interactions between multiple pre- and postsynaptic action potentials. In chapter 4, I study the stability/competition interplay in three different proposed multi-spike models of STDP. I show that the "triplet model" leads to a partially steady-state distribution of synaptic weights and induces Hebbian competition. The "suppression model" develops a stable distribution of weights when the average weight is high and shows predominantly anti-Hebbian competition. The "NMDAR-based" model can lead to either stable or partially stable synaptic weight distribution and exhibits both Hebbian and anti-Hebbian competition, depending on the parameters. I conclude that multi-spike STDP models can produce radically different effects at the population level depending on how they implement multi-spike interactions.;Finally in chapter 5, I focus on the types of global structures that arise from STDP in a recurrent network. By analyzing pairwise interactions of neurons through STDP and also numerical simulations of a large network, I show that conventional pair-based STDP functions as a loop-eliminating mechanism in a network of spiking neurons and organizes neurons into in- and out-hubs. Loop-elimination increases when depression dominates and decreases when potentiation dominates. STDP with dominant depression implements a buffering mechanism for network firing rates, and shifted STDP can generate recurrent connections in a network, and also functions as a homeostatic mechanism that maintains a roughly constant average value of the synaptic strengths. In conclusion, studying pairwise interactions of neurons through STDP provides a number of important insights about the structures that arise from this plasticity rule in large networks. This approach can be extended to networks with more complex STDP models and more structured external input.
机译:尖峰时序依赖可塑性(STDP)是一种广泛的突触修饰机制,对突触前尖峰序列之间的相关性敏感,并以功能上有用的方式组织神经回路。在本文中,我研究了突触群体中STDP的结构,并着重于突触稳定性和Hebbian竞争之间的相互作用,在第1章中进行了说明。从最简单的STDP描述开始,STDP将突触修饰与配对之间的间隔相关联。关于突触前和突触后尖峰,我将在第2章中说明,当对突触施加硬边界或软边界时,在此类“基于对”的STDP模型中,稳定性和Hebbian竞争是不兼容的。在第3章中,我提出了另一种受生物物理启发的方法,用于对突触施加限制,即在STDP窗口中引入较小的时间偏移。移位的STDP克服了突触稳定性和竞争的不相容性,可以实现Hebbian和反Hebbian形式的竞争可塑性。根据实验探索的各种尖峰模式,增强了STDP模型,以解决多个预激模型之间的相互作用。和突触后动作电位。在第4章中,我研究了STDP的三种不同的建议的多尖峰模型中的稳定性/竞争相互作用。我表明“三胞胎模型”导致突触权重的部分稳态分布并引发了Hebbian竞争。当平均体重较高时,“抑制模型”会产生稳定的体重分布,并且主要表现出反犹太人的竞争。 “基于NMDAR的”模型可以导致稳定或部分稳定的突触重量分布,并根据参数表现出Hebbian和anti-Hebbian竞争。我得出的结论是,多穗STDP模型可能会在人口层次上产生根本不同的效果,具体取决于它们如何实现多穗交互作用。最后,在第5章中,我重点介绍了循环网络中STDP产生的全局结构的类型。通过分析通过STDP进行的神经元的成对相互作用以及大型网络的数值模拟,我证明了传统的基于对的STDP在尖峰神经元网络中起环路消除机制的作用,并将神经元组织为入站和出站。当压抑占主导时,消除环路增加,而当压制占优势时,消除环路减少。具有显着压抑的STDP实现了针对网络触发速率的缓冲机制,移位后的STDP可以在网络中生成循环连接,并且还可以充当稳态机制,保持突触强度的平均值大致恒定。总之,研究通过STDP进行的神经元的成对相互作用提供了有关大型网络中可塑性规则产生的结构的许多重要见解。这种方法可以扩展到具有更复杂的STDP模型和更结构化的外部输入的网络。

著录项

  • 作者

    Babadi, Baktash.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Nanoscience.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号