首页> 外文学位 >Multiscale mechanics and structural design of periodic cellular materials.
【24h】

Multiscale mechanics and structural design of periodic cellular materials.

机译:周期性多孔材料的多尺度力学和结构设计。

获取原文
获取原文并翻译 | 示例

摘要

A periodic cellular material, also known as lattice material, is a periodic, reticulated micro-truss structure made up of a large number of elements; it is generated by tessellating a unit cell, composed of a small number of elements, in an infinite periodicity. Lattice materials are used to expand the properties of the solid material from which they are constructed to ranges of properties that depend on the lattice cell topology, besides the relative density, rho The development of lattice materials results in expanding the materials selection design space, thereby providing tailored materials for advanced engineering applications.;The work reported in this thesis aims at improving the current multiscale mechanics models as well as the structural analysis tools for the design of lattice materials.;Recent progress on this new family of materials has led to a classification which categorizes lattice materials into two groups, namely, bending dominated and stretching dominated. The former contains lattice materials that collapse by the local bending of their microscopic constituents, generating mechanical properties that are far from optimal. The latter includes lattice cell topologies that collapse by the stretching of their cell elements, giving a much higher stiffness and strength per unit mass. Despite this recent research advance in the understanding of the failure mechanics of lattice materials, important challenges need to be addressed. i) To date, the current approaches for modeling infinite periodic lattice structures are applicable to certain lattice topologies only. A robust, automated, analytical procedure to characterize the mechanical properties of a lattice material with an arbitrary microscopic topology is missing. ii) The strategy followed in literature to shape the cross-sections of slender cell elements into circular shapes, results in a local buckling failure of the lattice elements. To avoid this collapse, researchers have proposed to increase the cross-section size of the microscopic elements; this resistance increase, however, occurs at the expense of the material weight. iii) A stretching dominated lattice material offers mechanical properties that are remarkably better than a bending dominated material. Its structure consisting of fully triangulated topologies might yet contain several redundant members that bring about undesired extra weight as well as non-conformal and non-morphing structural behavior.
机译:周期性的蜂窝状材料,也称为晶格材料,是一种由大量元素组成的周期性的网状微桁架结构。它是通过无限期地细分由少量元素组成的单位单元生成的。晶格材料用于将构成它们的固体材料的特性扩展到取决于晶格单元拓扑的特性范围,除了相对密度rho之外。晶格材料的发展导致材料选择设计空间的扩展,从而为高级工程应用提供量身定制的材料。;本论文报道的工作旨在改进当前的多尺度力学模型以及用于设计晶格材料的结构分析工具。将晶格材料分为两组,即弯曲为主和拉伸为主。前者包含的晶格材料会因其微观成分的局部弯曲而崩溃,从而产生远非最佳的机械性能。后者包括晶格单元拓扑,这些单元格因其单元元素的拉伸而崩溃,从而使单位质量的刚度和强度更高。尽管最近在对晶格材料的失效机理的理解上有了新的研究进展,但仍需要解决重要的挑战。 i)迄今为止,用于建模无限周期晶格结构的当前方法仅适用于某些晶格拓扑。缺少用于表征具有任意微观拓扑结构的晶格材料的机械性能的强大,自动化的分析程序。 ii)文献中采用的将细长单元元件的横截面塑造为圆形的策略会导致晶格元件局部屈曲失效。为了避免这种塌陷,研究人员提出增加微观元件的横截面尺寸。但是,这种电阻增加是以材料重量为代价的。 iii)拉伸为主的晶格材料提供的机械性能明显优于弯曲为主的材料。它的结构由完全三角化的拓扑组成,但可能仍包含几个多余的成员,这些成员会带来不希望的额外重量以及不规则的和不变形的结构行为。

著录项

  • 作者

    Elsayed, Mostafa S.A.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 308 p.
  • 总页数 308
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号