首页> 外文学位 >Shock attenuation in landing
【24h】

Shock attenuation in landing

机译:降落时的冲击衰减

获取原文
获取原文并翻译 | 示例

摘要

Shock attenuation (SA) has been well studied in activities such as walking and running (Chu, et al. 2004; Derrick, et al. 2004; Mercer, et al. 2003); however, there is a lack of research regarding SA during landing. Furthermore, there is lack of information regarding which structures attenuate shock. The purpose of this study was to examine SA among the leg-hip, hip-head, and leg-head segments during landing. Each subject (n=10, Age 26.3 +/- 2.71 years, Height 1.68 +/- 0.08 m, Mass 70.49 +/- 16.03 kg) was instrumented with accelerometers at the leg, hip and forehead. Subjects then performed landings from three heights: 30cm, 60cm, and 90cm. For each height, subjects completed 5 landing trials. Rest was provided between each trial. Order of conditions was randomized to account for fatigue and learning. During each landing, accelerations were recorded at 1000 Hz for the leg, hip, and head respectively using light-weight accelerometers. Data were reduced by identifying the peak impact accelerations for the leg (PkLeg), hip (PkHip), and head (PkHead). After peak impact accelerations were identified, SA was calculated for three locations using the following formulas: Total (between leg and head) = [1-PkHd/PkLeg]*100, Lower (between leg and hip) = [1-PkHip/PkLeg]*100, Upper (between hip and head) = [1-PkHd/PkHip]*100. Peak impact accelerations as well as SA were the dependent variables. There were three levels of independent variable height (30 cm, 60 cm, and 90 cm) and location (leg, hip, and head for peak impact accelerations; total, lower, and upper-body for SA). Variables were compared using repeated measures ANOVA (&agr;=0.05). It was determined that there was an interaction between height and location for peak impact acceleration (p<0.05) but not for SA (p>0.05). Peak impact accelerations across all locations increased with an increase in height (p<0.05). It was also determined that total and lower body SA increased with an increase in height (p<0.05 ) but upper-body SA did not (p>0.05) With an overall increase in peak impact accelerations at all locations, and an increase in total and lower-body SA, but not upper-body SA, it appears the lower extremity is primarily responsible for the attenuation of the impacts resulting from landing.
机译:减震(SA)在步行和跑步等活动中已经得到了很好的研究(Chu等,2004; Derrick等,2004; Mercer等,2003)。但是,在登陆过程中缺乏关于SA的研究。此外,缺乏有关减弱震动的结构的信息。这项研究的目的是检查着陆期间腿部,臀部和腿部之间的SA。每个受试者(n = 10,年龄26.3 +/- 2.71岁,身高1.68 +/- 0.08 m,质量70.49 +/- 16.03 kg)在腿,髋和前额处使用加速度计进行测量。然后,受试者从三个高度分别降落:30cm,60cm和90cm。对于每个身高,受试者都要完成5次着陆试验。在每个试验之间提供休息。条件的顺序被随机分配以考虑疲劳和学习。在每次着陆期间,使用轻型加速度计分别记录了腿部,臀部和头部在1000 Hz处的加速度。通过确定腿部(PkLeg),臀部(PkHip)和头部(PkHead)的峰值冲击加速度,可以减少数据。确定峰值冲击加速度后,使用以下公式计算三个位置的SA:总值(腿与头之间)= [1-PkHd / PkLeg] * 100,下肢(腿与臀部之间)= [1-PkHip / PkLeg ] * 100,上(臀部和头部之间)= [1-PkHd / PkHip] * 100。峰值冲击加速度以及SA是因变量。共有三个级别的独立可变高度(30 cm,60 cm和90 cm)和位置(用于最大冲击加速度的腿部,臀部和头部; SA的整体,下部和上部)。使用重复测量方差分析(a = 0.05)比较变量。确定峰值冲击加速度时高度与位置之间存在相互作用(p <0.05),而对于SA则没有(p> 0.05)。随着高度的增加,所有位置的峰值冲击加速度都增加(p <0.05)。还确定总体和下半身SA随着高度的增加而增加(p <0.05),但上半身SA没有随高度的增加而增加(p> 0.05),并且所有位置的峰值冲击加速度总体上都增加,并且总体上增加而下半身SA,而不是上半身SA,看来下肢是造成着陆的影响减弱的主要原因。

著录项

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Biomechanics.;Kinesiology.;Health sciences.
  • 学位 M.S.
  • 年度 2012
  • 页码 66 p.
  • 总页数 66
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号