首页> 外文学位 >Evaluation de modeles biphasiques lineaires pour la caracterisation mecanique de la plaque de croissance
【24h】

Evaluation de modeles biphasiques lineaires pour la caracterisation mecanique de la plaque de croissance

机译:评估生长板的机械特性的线性双相模型

获取原文
获取原文并翻译 | 示例

摘要

The growth plate is a cartilaginous tissue that has a time dependant mechanical behavior in creep or relaxation like a viscoelastic material. The growth plate's mechanical properties are generally obtained by using a biphasic poroelastic model to curve-fit relaxation responses in Unconfined Compression (UC) or Confined Compression (CC). According to the biphasic poroelastic models, the growth plate is a homogenous tissue. It is however composed of chondrocytes distributed within an extracellular matrix and has 3 histological zones: the reserve, the proliferative and the hypertrophic zones. Furthermore, the form, volume fraction and chondrocyte dispersion varies in each of the three histological zones. A recent study has shown that the horizontal orientation of the collagen fibers within the reserve zone's extracellular matrix is different from that of the proliferative and hypertrophic zones. Each zone's mechanical behavior is similar to an isotropic transverse behavior as revealed by a biomechanics study. This study's first objective was to evaluate the Biphasic PoroElastic model (BPE) for the reserve and proliferative zones' mechanical characterization and the Transversely Isotropic Biphasic PoroElastic model (TIBPE) for the reserve zone. The second objective was to verify if the apparent transversely isotropic behavior of the proliferative zone is related to its chondrocytes alignment.;Random generation algorithms were developed in order to generate Finite Element Models (FEMs) representing the detailed microstructure of the reserve and proliferative zones. To evaluate the BPE, the reserve and proliferative zones detailed models had an extracellular matrix that obeyed the BPE whereas the evaluation of the TIBPE was conducted with reserve zone's detailed models with an extracellular matrix that obeyed the TIBPE. As a first approximation, the chondrocytes were assumed isotropically linear elastic in all models. To obtain the reserve and proliferative zones effective mechanical behavior, Representative Volume Elements (RVEs) were defined for relaxation in both UC and CC. Axisymmetric models obeying the BPE were optimized to simultaneously curve-fit the RVEs' responses in UC and CC for each zone which extracellular matrix behavior obeyed the BPE. In order to evaluate the TIBPE, an axisymmetric model obeying the TIBPE was optimized to simultaneously curve-fit the reserve zone's RVEs' responses in UC and CC for an extracellular matrix obeying the TIBPE. The previously optimized axisymmetric model obeying the TIBPE was then used to predict the mechanical behavior of a RVE under a new mechanical loading.;Results showed that the BPE was not able to predict the mechanical behavior of the reserve and proliferative zones modeled with an extracellular matrix obeying the BPE and isotropically linear elastic chondrocytes. The results of the simultaneous curve-fitting with the TIBPE gave good results. However, the optimized TIBPE was not able to predict the mechanical behavior for another loading. When the proliferative zone was modeled with an extracellular matrix obeying the BPE, their responses was not like a transversely isotropic behavior.;The curve-fittings' results with the BPE and the TIBPE suggest that a new behavior law could be developed to predict the mechanical behavior of the growth plate. Moreover, the chondrocytes alignment in the proliferative zone can not explain the apparent transversely isotropic behavior of this zone, suggesting that this behavior is related to the collagen fibers' orientation. This study had some limitations. The principal limitations were that the extracellular matrix's permeability was considered constant, the small deformations formulation of the biphasic models were used and the chondrocytes were modeled as an isotropically linear elastic material. For the methodology, the user had to manipulate several files and different softwares to obtain the RVEs and the optimization process could be improved.
机译:生长板是软骨组织,具有类似于粘弹性材料的随时间变化的蠕变或松弛机械性能。通常通过使用双相多孔弹性模型对无限制压缩(UC)或有限压缩(CC)进行曲线拟合松弛响应来获得生长板的机械性能。根据双相多孔弹性模型,生长板是均匀的组织。然而,它由分布在细胞外基质中的软骨细胞组成,并具有3个组织学区域:保留区,增生区和肥大区。此外,在三个组织学区域中的每一个中,形式,体积分数和软骨细胞分散均不同。最近的一项研究表明,保留区细胞外基质中胶原纤维的水平方向与增生区和肥大区的水平方向不同。生物力学研究显示,每个区域的机械行为类似于各向同性的横向行为。这项研究的第一个目标是评估储层和增生区力学特征的双相孔隙弹性模型(BPE),以及储藏区的横向各向同性双相孔隙弹性模型(TIBPE)。第二个目的是验证增殖区的表观横观各向同性行为是否与其软骨细胞排列有关。开发了随机生成算法,以生成代表储备区和增殖区详细微观结构的有限元模型(FEM)。为了评估BPE,储备区和增殖区的详细模型具有遵循BPE的细胞外基质,而TIBPE的评估是通过储备区的详细模型进行且遵循TIBPE的细胞外基质进行的。作为第一个近似值,在所有模型中,软骨细胞均假定为各向同性线性弹性。为了获得保留区和增生区的有效机械性能,定义了代表体积元素(RVE)以在UC和CC中均松弛。遵循BPE的轴对称模型经过优化,可同时针对每个区域的细胞外基质行为遵循BPE的情况,在UC和CC中同时曲线拟合RVE的反应。为了评估TIBPE,对遵循TIBPE的轴对称模型进行了优化,以针对服从TIBPE的细胞外基质同时对UC和CC中的保留区RVEs响应进行曲线拟合。然后使用先前遵循TIBPE的优化轴对称模型预测RVE在新的机械载荷下的力学行为;结果表明BPE无法预测以细胞外基质为模型的储备区和增生区的力学行为服从BPE和各向同性线性弹性软骨细胞。 TIBPE同时进行曲线拟合的结果给出了良好的结果。但是,优化的TIBPE无法预测其他载荷的机械性能。当用一个遵循BPE的细胞外基质对增生区进行建模时,它们的反应不像是横向各向同性行为。; BPE和TIBPE的曲线拟合结果表明,可以建立新的行为定律来预测力学生长板的行为。此外,在增生区的软骨细胞排列不能解释该区明显的横向各向同性行为,这表明这种行为与胶原纤维的取向有关。这项研究有一些局限性。主要局限性在于细胞外基质的渗透性被认为是恒定的,使用了双相模型的小变形公式,并且软骨细胞被建模为各向同性线性弹性材料。对于该方法,用户必须操纵多个文件和不同的软件才能获得RVE,并且可以改进优化过程。

著录项

  • 作者

    Bourgeois-Collin, Loic.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Mechanical engineering.;Biomedical engineering.
  • 学位 M.Sc.A.
  • 年度 2012
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号