首页> 外文学位 >Computational Study of Toxic Gas Removal by Reactive Adsorption.
【24h】

Computational Study of Toxic Gas Removal by Reactive Adsorption.

机译:反应吸附去除有毒气体的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Growing concerns about the environment and terrorist attacks prompt a search for effective adsorbents for removal of small molecule toxic gases, such as ammonia and hydrogen sulfide, under ambient conditions in the presence of moisture, where physical adsorption is not adequate. We use graphene oxide and CuBTC metal-organic framework as the adsorbents to explore toxic gas removal by reactive adsorption. Using ab initio density functional theory, atomistic reactive molecular dynamics and Monte Carlo simulation strategies, theoretical understanding of the underlying reaction and adsorption mechanisms of ammonia and hydrogen sulfide on graphene oxide and CuBTC metal-organic framework have been gained.;The ab initio calculation results show that ammonia and hydrogen sulfide decompose on carboxyl and epoxy functional groups and vacancy defects of graphene oxide. The existence of water molecules substantially reduces the adsorption/dissociation of ammonia or hydrogen sulfide on graphene oxide because the water molecules either form hydrogen bonds with the functional groups or adsorb more easily on the vacancy defects. Reactive molecular dynamics calculations by the ReaxFF method have been performed to propose realistic graphene oxide models for theoretical calculations. We also use reactive molecular dynamics simulation to study the thermal and hydrostatic stabilities of the CuBTC metal-organic framework and its application for ammonia removal. We predict the collapse temperature for CuBTC crystal structure and observe the partial collapse of CuBTC at lower temperatures upon ammonia adsorption. The results agree well with experiment data and provide insights on the reaction mechanism involved in such an ammonia removal process.;The research in this thesis can provide fundamental understanding, at the electronic and atomistic levels, of the roles of surface defects and functionalities for reactive adsorption of toxic gas molecules. In addition to developing experimental and theoretical algorithms to design effective adsorbents, the results are expected to find applications in air cleaning, energy storage, fuel cell technology and other scientific challenges where the separation of reactive molecules is involved.
机译:对环境的日益关注和恐怖袭击促使人们寻求有效的吸附剂,以在环境条件下,存在水分的情况下,去除物理吸附不充分的小分子有毒气体,例如氨和硫化氢。我们使用氧化石墨烯和CuBTC金属有机骨架作为吸附剂,以探索通过反应吸附去除有毒气体的方法。运用从头算密度泛函理论,原子反应分子动力学和蒙特卡洛模拟策略,获得了氨和硫化氢在氧化石墨烯和CuBTC金属有机骨架上的潜在反应和吸附机理的理论理解。结果表明,氨和硫化氢在羧基和环氧官能团上分解,并氧化石墨烯的空位缺陷。水分子的存在大大减少了氨或硫化氢在氧化石墨烯上的吸附/离解,因为水分子要么与官能团形成氢键,要么更容易吸附在空位缺陷上。已经通过ReaxFF方法进行了反应性分子动力学计算,从而为理论计算提出了现实的氧化石墨烯模型。我们还使用反应分子动力学模拟来研究CuBTC金属有机骨架的热稳定性和静液压稳定性及其在除氨中的应用。我们预测了CuBTC晶体结构的塌陷温度,并观察到氨吸附后在较低温度下CuBTC的部分塌陷。结果与实验数据吻合良好,并为这种脱氨过程中涉及的反应机理提供了见识。;本论文的研究可以在电子和原子水平上提供对表面缺陷和反应性功能的作用的基本理解。吸附有毒气体分子。除了开发实验和理论算法来设计有效的吸附剂外,预期结果还将发现在空气净化,能量存储,燃料电池技术和其他涉及反应性分子分离的科学挑战中的应用。

著录项

  • 作者

    Huang, Liangliang.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.;Health Sciences Toxicology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号