首页> 外文学位 >Analysis of gas-solid flow using particle-resolved direct numerical simulation: Flow physics and modeling.
【24h】

Analysis of gas-solid flow using particle-resolved direct numerical simulation: Flow physics and modeling.

机译:使用粒子分解直接数值分析方法对气固流动进行分析:流动物理学和建模。

获取原文
获取原文并翻译 | 示例

摘要

Gas-solid flows are encountered in many industrial processes such as pneumatic conveying, fluid catalytic cracking, CO2 capture and fast pyrolysis process. In spite of several experimental and numerical studies performed to understand the physics governing observed phenomena in gas-solid flows, and to propose accurate closure models for computational fluid dynamics (CFD) simulations using the averaged conservation equations, there are several challenges in gas-solid flows that yet need to be addressed. In many of the industrial processes, the solid-to-fluid density ratio is of the order of 100 to 1000, and the particle diameter ranges from 50 to 500 mu m. The interaction of heavy and large particles with the carrier phase leads to the formation of a boundary layer around each particle that in turn gives rise to interphase momentum transfer at the fluid-solid interface. The rate of work done by the carrier flow to sustain the interphase transfer of momentum leads to generation of velocity fluctuations in both the gas phase and the solid phase. Gas-phase velocity fluctuations enhance gas-particle heat transfer and the mixing of chemical species. Additionally, fluctuating motion of solid particles together with microscale hydrodynamic instabilities give rise to formation of mesoscopic particle clusters in gas-solid flows. The particle clusters then modify the hydrodynamic field and then the interconnected phenomena mentioned above dynamically modify the response of the system. Furthermore, if there exists a particle size distribution in the dispersed phase, the differences in the gas-particle and particle-particle drag forces lead to the segregation phenomenon.;In this study, particle-resolved direct numerical simulation (PR-DNS) is used to address some aspects of the challenges noted above, and to propose closure models for device-scale CFD calculations. First, the level of gas-phase velocity fluctuations is quantified, and its dependence on flow parameters is explained. An algebraic Reynolds stress model is proposed by decomposing the Reynolds stress into isotropic and deviatoric parts. Also the influence of solid particles with isotropic turbulent flow has been addressed using PR-DNS. In addition, in this study the slip velocity between two particle size classes in a bidisperse mixture is quantified, which is the key signature of segregation of particle size classes. The predictive capability of two-fluid closure models in predicting the slip velocity between particle size classes is also assessed. PR-DNS is used to propose a bidisperse gas-particle drag model that improves the prediction of the mean slip velocity between the two particle size classes. In addition, the mechanism of transfer of kinetic energy from the mean flow to fluid-phase and particle velocity fluctuations in a homogeneous bidisperse suspension is explained. This mechanism of transfer of energy is important because particle velocity fluctuations affect the particle-particle drag, which jointly with the gas-particle drag on each particle class determines the mean slip velocity between the two particle classes. In this study we have also used PR-DNS to quantify the mean drag force on particle clusters that are statistically consistent with those observed in experiments. A clustered particle drag model has been proposed based on our PR-DNS results. To address the effect of filtering the hydrodynamic field on flow statistics, which is used in LES of gas-solid flows, we have shown that the source and sink of kinetic energy in particle velocity fluctuations obtained from the PR-DNS are different from those predicted by the LES approach. These differences lead to a different level of kinetic energy in the solid phase obtained from the two approaches, and thus the flow characteristics that depend on solid-phase kinetic energy, such as formation and evolution of particle clusters, may not be comparable between the PR-DNS and LES approaches. In this study we have also used PR-DNS to quantify the growth rate of mixing length in a particle-laden mixing layer, and the corresponding mechanism is identified by using a scaling analysis.
机译:气固流在许多工业过程中都遇到,例如气动输送,流化催化裂化,CO2捕集和快速热解过程。尽管进行了一些实验和数值研究,以了解控制气固流中观测现象的物理学,并为使用平均守恒方程式的计算流体力学(CFD)模拟提供精确的封闭模型,但气固仍然存在一些挑战还需要解决的流程。在许多工业过程中,固体与流体的密度比为100至1000,粒径为50至500μm。大颗粒和大颗粒与载体相的相互作用导致在每个颗粒周围形成边界层,从而在流固界面上引起相间动量传递。载流为维持动量的相间传递而完成的功率导致在气相和固相两者中产生速度波动。气相速度波动会增强气体颗粒的传热和化学物质的混合。此外,固体颗粒的波动运动以及微观尺度的流体动力学不稳定性会导致在气固流中形成介观的颗粒团簇。粒子簇然后修改流体动力场,然后上述相互联系的现象动态修改系统的响应。此外,如果在分散相中存在粒径分布,则气体颗粒和颗粒-颗粒拖曳力的差异会导致偏析现象。在本研究中,颗粒分辨直接数值模拟(PR-DNS)为用于解决上述挑战的某些方面,并提出用于设备规模CFD计算的封闭模型。首先,对气相速度波动的水平进行量化,并解释其对流动参数的依赖性。通过将雷诺应力分解为各向同性和偏角部分,提出了代数雷诺应力模型。使用PR-DNS也解决了固体颗粒与各向同性湍流的影响。另外,在这项研究中,定量了双分散混合物中两个粒度等级之间的滑移速度,这是分离粒度等级的关键标志。还评估了两种流体封闭模型在预测颗粒尺寸类别之间的滑移速度方面的预测能力。 PR-DNS用于提出双分散气体颗粒阻力模型,该模型改进了两个粒径类别之间的平均滑动速度的预测。此外,还解释了动能从均相转移到液相和颗粒速度波动在均匀的双分散悬浮液中的转移机理。这种能量传递机制很重要,因为粒子速度波动会影响粒子间的阻力,而粒子间的阻力与气体粒子的阻力共同决定了两个粒子间的平均滑动速度。在这项研究中,我们还使用PR-DNS量化了对粒子簇的平均拖曳力,该平均拖曳力与实验中观察到的在统计学上一致。基于我们的PR-DNS结果,提出了一个聚类的粒子阻力模型。为了解决在气固流LES中使用的对水动力场进行过滤对流量统计的影响,我们已经表明,从PR-DNS获得的粒子速度波动中动能的源和下沉与预测的不同通过LES方法。这些差异导致通过两种方法获得的固相动能水平不同,因此取决于固相动能的流动特性(例如粒子团的形成和演化)在PR之间可能不具有可比性。 -DNS和LES方法。在这项研究中,我们还使用PR-DNS量化了在充满颗粒的混合层中混合长度的增长率,并通过比例分析确定了相应的机制。

著录项

  • 作者

    Mehrabadi, Mohammad.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Mechanical engineering.;High energy physics.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号