首页> 外文学位 >Anchor Centric Virtual Coordinate Systems in Wireless Sensor Networks: From self-organization to network awareness.
【24h】

Anchor Centric Virtual Coordinate Systems in Wireless Sensor Networks: From self-organization to network awareness.

机译:无线传感器网络中的以锚为中心的虚拟坐标系:从自组织到网络感知。

获取原文
获取原文并翻译 | 示例

摘要

Future Wireless Sensor Networks (WSNs) will be collections of thousands to millions of sensor nodes, automated to self-organize, adapt, and collaborate to facilitate distributed monitoring and actuation. They may even be deployed over harsh geographical terrains and 3D structures. Low-cost sensor nodes that facilitate such massive scale networks have stringent resource constraints (e.g., in memory and energy) and limited capabilities (e.g., in communication range and computational power). Economic constraints exclude the use of expensive hardware such as Global Positioning Systems (GPSs) for network organization and structuring in many WSN applications. Alternatives that depend on signal strength measurements are highly sensitive to noise and fading, and thus often are not pragmatic for network organization. Robust, scalable, and efficient algorithms for network organization and reliable information exchange that overcome the above limitations without degrading the network's lifespan are vital for facilitating future large-scale WSN networks.;This research develops fundamental algorithms and techniques targeting self-organization, data dissemination, and discovery of physical properties such as boundaries of large-scale WSNs without the need for costly physical position information. Our approach is based on Anchor Centric Virtual Coordinate Systems, commonly called Virtual Coordinate Systems (VCSs), in which each node is characterized by a coordinate vector of shortest path hop distances to a set of anchor nodes. We develop and evaluate algorithms and techniques for the following tasks associated with use of VCSs in WSNs: (a) novelty analysis of each anchor coordinate and compressed representation of VCSs; (b) regaining lost directionality and identifying a `good' set of anchors; (c) generating topology preserving maps (TPMs); (d) efficient and reliable data dissemination, and boundary identification without physical information; and (f) achieving network awareness at individual nodes.;After investigating properties and issues related to VCS, a Directional VCS (DVCS) is proposed based on a novel transformation that restores the lost directionality information in VCS. Extreme Node Search (ENS), a novel and efficient anchor placement scheme, starts with two randomly placed anchors and then uses this directional transformation to identify the number and placement of anchors in a completely distributed manner. Furthermore, a novelty-filtering-based approach for identifying a set of `good' anchors that reduces the overhead and power consumption in routing is discussed. Physical layout information such as physical voids and even relative physical positions of sensor nodes with respect to X-Y directions are absent in a VCS description. Obtaining such information independent of physical information or signal strength measurements has not been possible until now. Two novel techniques to extract Topology Preserving Maps (TPMs) from VCS, based on Singular Value Decomposition (SVD) and DVCS are presented. A TPM is a distorted version of the layout of the network, but one that preserves the neighborhood information of the network. The generalized SVD-based TPM scheme for 3D networks provides TPMs even in situations where obtaining accurate physical information is not possible. The ability to restore directionality and topology-based Cartesian coordinates makes VCS competitive and, in many cases, a better alternative to geographic coordinates. This is demonstrated using two novel routing schemes in VC domain that outperform the well-known physical information-based routing schemes. The first scheme, DVC Routing (DVCR) uses the directionality recovered by DVCS. Geo-Logical Routing (GLR) is a technique that combines the advantages of geographic and logical routing to achieve higher routability at a lower cost by alternating between topology and virtual coordinate spaces to overcome local minima in the two domains. GLR uses topology domain coordinates derived solely from VCS as a better alternative for physical location information. A boundary detection scheme that is capable of identifying physical boundaries even for 3D surfaces is also proposed.;"Network awareness" is a node's cognition of its neighborhood, its position in the network, and the network-wide status of the sensed phenomena. A novel technique is presented whereby a node achieves network awareness by passive listening to routine messages associated with applications in large-scale WSNs. With the knowledge of the network topology and phenomena distribution, every node is capable of making solo decisions that are more sensible and intelligent, thereby improving overall network performance, efficiency, and lifespan.;In essence, this research has laid a firm foundation for use of Anchor Centric Virtual Coordinate Systems in WSN applications, without the need for physical coordinates. Topology coordinates, derived from virtual coordinates, provide a novel, economical, and in many cases, a better alternative to physical coordinates. A novel concept of network awareness at nodes is demonstrated.
机译:未来的无线传感器网络(WSN)将是成千上万到数百万个传感器节点的集合,这些节点将自动进行自组织,适应和协作,以促进分布式监视和启动。它们甚至可以部署在恶劣的地形和3D结构上。促进这种大规模网络的低成本传感器节点具有严格的资源约束(例如,在存储器和能量上)和有限的能力(例如,在通信范围和计算能力上)。经济上的限制不包括在许多WSN应用中使用昂贵的硬件(例如全球定位系统(GPS))进行网络组织和结构化。依赖于信号强度测量的替代方案对噪声和衰落高度敏感,因此对于网络组织而言通常并不实用。用于网络组织的健壮,可扩展,高效的算法和可靠的信息交换,在不降低网络寿命的情况下克服了上述限制,对于促进未来的大规模WSN网络至关重要。本研究开发了针对自组织,数据分发的基本算法和技术。 ,无需昂贵的物理位置信息即可发现物理属性(例如大规模WSN的边界)。我们的方法基于以锚为中心的虚拟坐标系,通常称为虚拟坐标系(VCS),其中每个节点的特征是到一组锚节点的路径跳距最短的坐标向量。我们针对与WSN中使用VCS相关的以下任务开发和评估算法和技术:(a)每个锚点坐标的新颖性分析和VCS的压缩表示; (b)重新获得失去的方向性,并确定一组“良好”的锚点; (c)生成拓扑保存图(TPM); (d)有效和可靠的数据分发,以及无需物理信息即可进行边界识别;在研究了与VCS相关的特性和问题之后,基于一种新颖的变换,提出了一种定向VCS(DVCS),该方法可以恢复VCS中丢失的定向信息。极端节点搜索(ENS)是一种新颖而有效的锚点放置方案,从两个随机放置的锚点开始,然后使用此方向转换以完全分布式的方式识别锚点的数量和位置。此外,讨论了一种基于新颖性过滤的方法,用于识别一组“良好”锚,从而减少了路由选择中的开销和功耗。在VCS描述中,缺少物理布局信息,例如物理空隙,甚至传感器节点相对于X-Y方向的相对物理位置。迄今为止,尚不可能获得与物理信息或信号强度测量无关的信息。提出了两种基于奇异值分解(SVD)和DVCS从VCS提取拓扑保留图(TPM)的新颖技术。 TPM是网络布局的变形版本,但保留了网络的邻域信息。即使在不可能获得准确的物理信息的情况下,用于3D网络的基于SVD的通用TPM方案也可以提供TPM。恢复方向性和基于拓扑的笛卡尔坐标的能力使VCS具有竞争力,并且在许多情况下是地理坐标的更好替代方案。这在VC域中使用两种新颖的路由方案得到了证明,它们优于众所周知的基于物理信息的路由方案。第一种方案DVC路由(DVCR)使用DVCS恢复的方向性。地理逻辑路由(GLR)是一种技术,它结合了地理和逻辑路由的优点,通过在拓扑和虚拟坐标空间之间交替以克服两个域中的局部最小值,从而以较低的成本实现更高的可路由性。 GLR使用仅从VCS派生的拓扑域坐标作为物理位置信息的更好替代方法。还提出了一种边界检测方案,该方案甚至对于3D表面也可以识别物理边界。“网络感知”是节点对其节点的邻域,其在网络中的位置以及所感测到的现象在网络范围内的状态的认知。提出了一种新颖的技术,其中节点通过被动侦听与大规模WSN中的应用程序相关的例行消息来实现网络感知。有了网络拓扑和现象分布的知识,每个节点都能够做出更明智和智能的单独决策,从而提高整体网络性能,效率和使用寿命。;本质上,这项研究为使用奠定了坚实的基础。 WSN应用程序中不需要锚定中心的虚拟坐标系,无需物理坐标。从虚拟坐标派生的拓扑坐标提供了一种新颖的方法,经济,并且在许多情况下是物理坐标的更好替代方案。演示了节点网络意识的新概念。

著录项

  • 作者

    Dhanapala, Dulanjalie C.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 307 p.
  • 总页数 307
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号