首页> 外文学位 >The effect of ethanol on aerobic BTEX biodegradation: The metabolic flux dilution model and continuous culture experiments.
【24h】

The effect of ethanol on aerobic BTEX biodegradation: The metabolic flux dilution model and continuous culture experiments.

机译:乙醇对好氧BTEX生物降解的影响:代谢通量稀释模型和连续培养实验。

获取原文
获取原文并翻译 | 示例

摘要

The use of ethanol as an automotive fuel oxygenate represents potential economic and air-quality benefits. However, little is known about how ethanol may affect the natural attenuation of petroleum product releases. Chemostat experiments were conducted with four pure cultures (representing the archetypes of the known aerobic toluene degradation pathways) to determine how ethanol affects BTEX biodegradation kinetics. In all cases, the presence of ethanol decreased the metabolic flux of toluene (measured as the rate of toluene degradation per cell). This negative effect was counteracted by an ethanol-supported increase in biomass, which is conducive to faster degradation rates. Under carbon-limiting conditions, the metabolic flux of BTEX was proportional to its relative availability in the mixture, which decreases with increasing ethanol concentration. Metabolic flux dilution (MFD), a form of non-competitive inhibition that implies that the utilization of a carbon source in a mixture is proportional to its relative availability, was modeled without any fitting parameters based on the above finding. Thus, increasing concentrations of alternative carbon sources "dilute" the metabolic flux of toluene (or BTEX) without necessarily repressing tod, as observed with phenol (a known tod inducer) using a bioreporter strain, Pseudomonas putida TOD102. For all co-substrates, the MFD model slightly over-predicted the measured toluene metabolic flux. Incorporating catabolite repression (for experiments with acetate or ethanol) or competitive inhibition (for experiments with phenol) with independently obtained parameters resulted in more accurate fits of the observed decrease in toluene metabolic flux with increasing co-substrate concentration. These results imply that alternative carbon sources (including inducers) are likely to hinder toluene utilization per unit cell, and that these effects can be accurately predicted with simple mathematical models.
机译:使用乙醇作为汽车燃料的含氧化合物具有潜在的经济和空气质量效益。但是,关于乙醇如何影响石油产品释放的自然衰减知之甚少。用四种纯培养物(代表已知的好氧甲苯降解途径的原型)进行了化学恒压实验,以确定乙醇如何影响BTEX生物降解动力学。在所有情况下,乙醇的存在都会降低甲苯的代谢通量(以每个细胞的甲苯降解率衡量)。乙醇支持的生物量增加抵消了这种负面影响,这有利于加快降解速度。在碳限制条件下,BTEX的代谢通量与其在混合物中的相对利用率成正比,随乙醇浓度的增加而降低。基于上述发现,对代谢通量稀释(MFD)(一种非竞争性抑制形式,意味着混合物中碳源的利用与其相对可用性成正比)进行了建模,而没有任何合适的参数。因此,增加的替代碳源的浓度“稀释”了甲苯(或BTEX)的代谢通量,而不必抑制tod,如使用生物报告株恶臭假单胞菌TOD102用苯酚(已知的tod诱导剂)观察到的。对于所有共底物,MFD模型会稍微高估测得的甲苯代谢通量。将分解代谢物阻抑作用(用于乙酸盐或乙醇的实验)或竞争性抑制作用(用于酚的实验)与独立获得的参数结合在一起,可以更准确地拟合所观察到的甲苯代谢通量随共底物浓度增加而降低的情况。这些结果表明,替代碳源(包括诱导剂)可能会阻碍每晶胞对甲苯的利用,并且可以通过简单的数学模型准确预测这些影响。

著录项

  • 作者

    Lovanh, Nanh.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号