首页> 外文学位 >Thermal control in micromachined devices and its application.
【24h】

Thermal control in micromachined devices and its application.

机译:微机械设备中的热控制及其应用。

获取原文
获取原文并翻译 | 示例

摘要

Thermal control is an important issue for Micro-Electro-Mechanical Systems (MEMS) because it is directly related to device reliability during operation. However, few studies have been done about thermal control in MEMS. In this research, the study of heat transfer at the interfaces of micromachined devices and the development of new mechanisms for thermal control are covered.; To study heat transfer at the interfaces of micromachined devices, micromirrors have been used as electrostatic actuators with the substrate. Thermal contact between the micromirrors and the fixed substrate can be induced and controlled by electrostatic actuation, and characterized by pure electrical method. For every device tested, the TCC is higher in vacuum than in air. This is in stark contrast to the behavior of bulk interfaces and may be the result of decreased solid-solid contact area in air caused by the pressure of the interstitial fluid.; At present, thermal detectors are designed and operated with fixed thermal conductance, which limits dynamic range. We have found that adaptive thermal detectors can be operated over a much larger dynamic range by using thermal contact control techniques: first, control of contact points of curved support beams and second, control of contact points of photolithographically defined support beams. Test structures of adaptive thermal detectors based on the first technique have been built and characterized by measuring thermal conductance and responsivity with and without electrostatic actuation. Better performance has been obtained by building a new structure based on the second technique. The performance of the new structure has been compared to commercial microbolometers by measuring thermal conductance, responsivity, and detectivity with noise measurement in an unactuated and an actuated state, respectively.
机译:热控制是微机电系统(MEMS)的重要问题,因为它与操作过程中的设备可靠性直接相关。然而,关于MEMS中的热控制的研究很少。在这项研究中,涵盖了微机械设备界面传热的研究以及热控制新机制的发展。为了研究微机械设备的界面处的热传递,微镜已被用作与基板的静电致动器。可以通过静电致动来诱发和控制微镜与固定基板之间的热接触,并且通过纯电方法来表征。对于每个测试的设备,TCC的真空度都高于空气。与本体界面的行为形成鲜明对比,这可能是由于间隙流体压力导致空气中固-固接触面积减少的结果。目前,热探测器的设计和运行具有固定的热导率,这限制了动态范围。我们发现,通过使用热接触控制技术,自适应热探测器可以在更大的动态范围内运行:首先,控制弯曲支撑梁的接触点,其次,控制光刻定义的支撑梁的接触点。已经建立了基于第一种技术的自适应热探测器的测试结构,并通过在有和没有静电驱动的情况下测量热导率和响应度来进行表征。通过基于第二种技术构建新的结构,可以获得更好的性能。通过分别在未激活状态和激活状态下进行噪声测量,可以测量热导率,响应度和检测率,从而将新结构的性能与商用测微辐射热计进行了比较。

著录项

  • 作者

    Song, Woo-Bin.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号