首页> 外文学位 >Thermal and power integrity analysis and optimization for high performance VLSI.
【24h】

Thermal and power integrity analysis and optimization for high performance VLSI.

机译:高性能VLSI的热和电源完整性分析和优化。

获取原文
获取原文并翻译 | 示例

摘要

The ever-increasing demands for more functionality and higher speed have pushed the VLSI industry towards more aggressive scaling. Since this trend leads to higher current density and power dissipation in power/ground (P/G) network, the voltage fluctuations on the on-chip power distribution system are becoming a crucial factor in determining the performance and the reliability of VLSI designs. A complete picture of the power grid integrity can be obtained only when IR-drop, electromigration (EM), and thermal effect are all considered together.; However, traditional P/G network design methodologies aim at minimizing the total routing area subject to EM and IR-drop constraints. Thermal effect is ignored in the design, and can cause thermally-induced performance and reliability issues. Therefore, we propose an algorithm for P/G network design with thermal integrity. The basic idea is to include the thermal effect in optimization process. To consider thermal effect in IR-drop, IR-drop constraint must be temperature dependent. In addition, a new self-consistent constraint is defined and used to replace the EM constraint for the thermal integrity. This self-consistent constraint is based on the idea of finding simultaneous solution of EM and SH effects. In order to have required thermal reliability in P/G network, the objective function is based on minimizing the sum of each wire's weighted sum of average power dissipation and wire area. The idea is that the smaller the routing area, the larger the power dissipation will be in P/G network. This approach addresses the power dissipation and thermal integrity.; Due to the thermal integrity design of P/G network, we need to effectively analyze the three-dimensional (3-D) substrate temperature distribution and hot-spot locations. Therefore, we develop an efficient transient thermal simulator, 3D Thermal-ADI, using the ADI method to simulate the 3-D temperature profile. Basically, the ADI method is an alternative solution method which instead of solving the three dimensional problems, solves a succession of three one-dimensional problems. Our simulator is not only unconditionally stable but also has a linear runtime and a linear memory usage.; In order to analyze the thermal reliability of P/G network, we develop a SPICE-compatible thermal simulator, 3D Thermal-IEKS, for interconnect reliability analysis. The basic idea is to model the thermal simulation problem as electrical simulation problem. An adaptive approach is used to reduce the problem size and achieve enough accuracy. Then an improved extended Krylov subspace (IEKS) engine, independent of the number of input ports, is used for simulation.
机译:对更多功能和更高速度的不断增长的需求已将VLSI行业推向更积极的扩展。由于这种趋势导致电源/地(P / G)网络中的电流密度和功耗更高,因此片上配电系统上的电压波动正成为决定VLSI设计的性能和可靠性的关键因素。只有同时考虑IR降,电迁移(EM)和热效应,才能获得完整的电网完整性图。但是,传统的P / G网络设计方法旨在最小化受EM和IR掉线约束的总路由区域。热效应在设计中被忽略,并可能引起热引起的性能和可靠性问题。因此,我们提出了一种具有热完整性的P / G网络设计算法。基本思想是在优化过程中包括热效应。要考虑IR降中的热效应,IR降约束必须取决于温度。此外,定义了一个新的自洽约束,并将其用于代替EM约束以实现热完整性。这种自洽约束是基于寻找EM和SH效应的同时解的思想。为了在P / G网络中具有所需的热可靠性,目标函数基于最小化每条电线的加权平均总功耗和电线面积之和。这个想法是,路由区域越小,P / G网络中的功耗就越大。这种方法解决了功耗和热完整性。由于P / G网络的热完整性设计,我们需要有效地分析三维(3-D)基板温度分布和热点位置。因此,我们使用ADI方法开发了高效的瞬态热仿真器3D Thermal-ADI,以模拟3-D温度曲线。基本上,ADI方法是替代解决方案方法,它解决了三个一维问题,而不是解决三个维问题。我们的模拟器不仅无条件稳定,而且具有线性运行时间和线性内存使用率。为了分析P / G网络的热可靠性,我们开发了一种兼容SPICE的热仿真器3D Thermal-IEKS,用于互连可靠性分析。基本思想是将热模拟问题建模为电模拟问题。自适应方法用于减小问题的大小并获得足够的精度。然后,独立于输入端口数量的改进的扩展Krylov子空间(IEKS)引擎用于仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号