首页> 外文学位 >Anaerobic reduction of manganese oxides and its effect on the carbon and nitrogen cycles.
【24h】

Anaerobic reduction of manganese oxides and its effect on the carbon and nitrogen cycles.

机译:锰氧化物的厌氧还原及其对碳和氮循环的影响。

获取原文
获取原文并翻译 | 示例

摘要

The biogenic reduction of Mn(IV) oxides is one of the most favorable anaerobic electron transfer processes in aquatic systems and likely plays an important role in the redox cycle of both carbon and nitrogen in anaerobic environments; yet, the different pathways involved in the microbial transformation of Mn(IV) oxides remain unclear.;The coupling between the reduction of Mn(IV) to Mn(II) and the oxidation of organic carbon to CO2 is largely catalyzed by microorganisms in various environments such as redox stratified water columns and sediments. The recent discovery that soluble Mn(III) exists in natural systems and is formed during biological oxidation of Mn(II) implies the possibility that Mn(III) is formed as an intermediate during the microbial reduction of Mn(IV). In this dissertation, mutagenesis studies and kinetic analysis were combined to study the mechanism of microbial reduction of Mn(IV) by Shewanella oneidensis MR-1, one of the most studied metal-respiring prokaryotes. We show for the first time that the microbial reduction of Mn(IV) proceeds step-wise via two successive one-electron transfer reactions with soluble Mn(III) as intermediate produced in solution. The point mutant strain Mn3, generated via random chemical mutagenesis, presents a unique phenotype that reduces solid Mn(IV) to Mn(III) but not to Mn(II), suggesting that these two reduction steps proceed via different electron transport pathways. Mutagenesis studies on various in-frame deletion mutant strains demonstrate that the reduction of both solid Mn(IV) and soluble Mn(III) occurs at the outer membrane of the cell and Mn(IV) respiration involves only one of the two potential terminal reductases (c-type cytochrome MtrC and OmcA) involved in Fe(III) respiration. Interestingly, only the second electron transfer step is coupled to the respiration of organic carbon, which opposes the long-standing paradigm that microbial reduction of Mn(IV) proceeds via the single transfer of two electrons coupled to the mineralization of carbon substrates.;The coupling between anaerobic nitrification and Mn reduction has been demonstrated to be thermodynamically favorable. However, the existence of this process in natural system is still in debate. In this dissertation, characterization of coastal marine sediments was combined with laboratory incubations of the same sediments to investigate the effect of Mn oxides on the redox cycle of nitrogen. Our slurry incubations demonstrate that anaerobic nitrification is catalyzed by Mn oxides. In addition, mass balance calculations on NH 4 + link the consumption of NH4 + to anaerobic ammonium oxidation in the presence of Mn oxides and confirm the occurrence of Mn(IV)-catalyzed anaerobic nitrification. The activity of anaerobic nitrification is greatly affected by the initial ratio of Mn(IV) to NH 4 +, the reactivity of Mn oxides, and the reducing potential of the system. Overall, Mn(IV)-catalyzed anaerobic nitrification may be an important source of nitrite/nitrate in anaerobic marine sediments and provide an alternative pathway for subsequent nitrogen losses in the marine nitrogen cycle.
机译:Mn(IV)氧化物的生物还原是水生系统中最有利的厌氧电子转移过程之一,可能在厌氧环境中碳和氮的氧化还原循环中发挥重要作用;然而,Mn(IV)氧化物的微生物转化所涉及的不同途径仍不清楚。; Mn(IV)还原为Mn(II)和有机碳氧化为CO2之间的耦合在很大程度上被微生物催化氧化还原层水柱和沉积物等环境。最近发现,可溶性Mn(III)存在于自然系统中,并且是在Mn(II)的生物氧化过程中形成的,这暗示了Mn(III)在微生物还原Mn(IV)过程中作为中间体形成的可能性。本文结合诱变研究和动力学分析,研究了金属丝状原核生物之一Shewanella oneidensis MR-1对微生物还原Mn(IV)的机理。我们首次表明,通过以可溶性锰(III)作为中间产物在溶液中产生的两个连续的单电子转移反应,逐步进行了锰(IV)的微生物还原。通过随机化学诱变产生的点突变菌株Mn3具有独特的表型,可将固体Mn(IV)还原为Mn(III)而不还原为Mn(II),表明这两个还原步骤均通过不同的电子传输途径进行。对各种框内缺失突变株的诱变研究表明,固体Mn(IV)和可溶性Mn(III)的减少都发生在细胞的外膜上,并且Mn(IV)呼吸仅涉及两种潜在的末端还原酶之一(c型细胞色素MtrC和OmcA)参与Fe(III)呼吸作用。有趣的是,只有第二个电子转移步骤与有机碳的呼吸作用耦合,这与长期存在的范式相反,该范式是通过与碳底物矿化耦合的两个电子的单次转移来进行微生物还原Mn(IV)。已证明厌氧硝化和Mn还原之间的偶联在热力学上是有利的。然而,这一过程在自然系统中的存在仍在争论中。本文将沿海海洋沉积物的表征与相同沉积物的实验室培养相结合,以研究锰氧化物对氮的氧化还原循环的影响。我们的浆料培养表明,厌氧硝化是由锰氧化物催化的。此外,对NH 4 +的质量平衡计算将NH 4 +的消耗与存在Mn氧化物的厌氧铵氧化联系起来,并证实了Mn(IV)催化的厌氧硝化的发生。 Mn(IV)与NH 4 +的初始比例,Mn氧化物的反应性以及系统的还原电位极大地影响了厌氧硝化的活性。总体而言,Mn(IV)催化的厌氧硝化作用可能是厌氧海洋沉积物中亚硝酸盐/硝酸盐的重要来源,并为随后的海洋氮循环中的氮损失提供了替代途径。

著录项

  • 作者

    Lin, Hui.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Geochemistry.;Biogeochemistry.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号