首页> 外文学位 >Quantum Transport in the Transient Regime and Unconventional Geometries.
【24h】

Quantum Transport in the Transient Regime and Unconventional Geometries.

机译:瞬态和非常规几何中的量子传输。

获取原文
获取原文并翻译 | 示例

摘要

This thesis addresses the quantum electronic transport properties of semiconductor nanostructures in the transient regime (Theme 1) and unconventional geometries (Theme 2), and the numerical algorithms to study them computationally. The transient regime properties are important in modeling fast-switching devices in digital electronics and high-frequency devices in sensing and telecommunications. In Theme 1, we start by overviewing the most important quantum master equations, then derive a quantum master equation for the device active region and couple it to the Poisson, Schrodinger, and current continuity equations in order to calculate the time-dependent charge density, current density, and potential profile of the nanostructure. Nanostructures are treated using the open system formalism. We introduce suitable initial conditions and discuss the role of scattering during the transient using a simple model. The results show that the longer the contact relaxation time, the shorter the transient. Furthermore, due to the initial depletion of electrons in the device, and depending on the strength of scattering injection into localized device states, the measured contact current and the device current can be very different initially due to charging/discharging. On the other hand, nanostructures with unconventional, curved geometries can be fabricated today in forms as complicated as helices. Curvature, coupled with a magnetic field, can have large effects on conductance, using mechanic or mechano-magnetic means for control. In Theme 2, we study the steady state, coherent quantum conduction in curved nanoribbons in a magnetic field. We transform the curvilinear Schrodinger equation into a tight-binding form and discuss the Hermiticity issues with the matrix Hamiltonian and the ways to deal with it. The method to solve the tight-binding Schrodinger equation introduces a preferable direction, which affects the choice of gauge that gives reasonable physical results. Consequently, we devise a local Landau gauge to help ensure that no artificial numerical reflection befalls the current-carrying states in the presence of a magnetic field. By applying this method to curved geometries with or without helicity, we observe conduction quenching and resonant reflections, among other features.
机译:本文研究了半导体纳米结构在瞬态状态(主题1)和非常规几何形状(主题2)中的量子电子输运性质,并通过数值算法对其进行了计算研究。瞬态状态特性对于数字电子设备中的快速开关设备以及传感和电信中的高频设备的建模非常重要。在主题1中,我们首先概述了最重要的量子主方程,然后导出了器件有源区的量子主方程,并将其与泊松,薛定inger和电流连续性方程耦合,以便计算随时间变化的电荷密度,电流密度和纳米结构的电位分布。纳米结构使用开放系统形式主义进行处理。我们介绍了合适的初始条件,并使用简单模型讨论了散射在瞬态过程中的作用。结果表明,接触弛豫时间越长,瞬态越短。此外,由于器件中电子的初始耗尽,并且取决于散射注入局部器件状态的强度,所测量的接触电流和器件电流最初可能因充电/放电而非常不同。另一方面,具有非常规弯曲几何形状的纳米结构如今可以以与螺旋一样复杂的形式制造。使用机械或机电方法进行控制,曲率与磁场耦合会对电导产生很大影响。在主题2中,我们研究了磁场中弯曲纳米带的稳态相干量子传导。我们将曲线的薛定inger方程转换为紧束缚形式,并讨论矩阵哈密顿量的厄米性问题及其处理方法。解决紧束缚薛定inger方程的方法引入了一个较好的方向,这影响了给出合理物理结果的量规的选择。因此,我们设计了一个局部的Landau量规,以确保在存在磁场的情况下,不会有任何人工数值反射落入载流状态。通过将此方法应用于具有或不具有螺旋度的弯曲几何形状,我们可以观察到传导猝灭和共振反射以及其他特征。

著录项

  • 作者

    Novakovic, Bozidar.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号