首页> 外文学位 >Coherent strong field interactions between a nanomagnet and a photonic cavity.
【24h】

Coherent strong field interactions between a nanomagnet and a photonic cavity.

机译:纳米磁体和光子腔之间的相干强场相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology.;However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ∼ 1 mm radius with a nanomagnet of ∼ 100 nm radius and ferromagnet resonance frequency of ∼ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.
机译:光与物质的强耦合是腔量子电动力学(cavity-QED)和量子光学的必不可少的元素,它可能导致光与物质的新型混合态以及诸如量子计算的应用。在强耦合状态下,耦合强度超过了耗散,光-质相互作用产生了特征性的真空拉比分裂。因此,强耦合可以用作光与物质(以电子电荷,自旋或超导库珀对的形式)之间有效的相干界面,以实现包括量子存储,隐形传态和量子中继器在内的量子信息技术的组成部分。半导体量子点,核自旋和顺磁自旋系统只是固态物理中强耦合研究中的一些材料系统。通过电偶极跃迁耦合的光和物质的混合状态通常会遇到较短的相干时间(纳秒)。尽管磁跃迁似乎比轨道跃迁本质上具有更多的量子相干性,但据估计它们的典型耦合强度要小得多。因此,它们在量子信息技术中被忽略了。但是,我们预测,由于交换相互作用会导致大量自旋相干地锁定在一起,并且交换量显着增加,因此光子与强磁性纳米磁铁之间的强耦合是可行的。在保持非常长的相干时间的同时保持振荡器的强度。为了检验这种新的令人兴奋的可能性,在完全量子力学处理中分析了铁磁纳米磁体与腔体的单光子模式的相互作用。预计在半径约1 mm的球形腔中,半径约100 nm的纳米磁体,铁磁体的共振频率约200 GHz,可以实现耦合项超过几个THz的超大量子相干磁体-光子耦合。这应该大大超过在轨道过渡和光之间的固体中观察到的耦合。纳米磁体-光子系统的本征态对应于每个量子数的105个值以上的自旋取向和光子数的纠缠态。明确的自旋和光子数的初始相干态会动态发展,从而在微波功率中产生大的相干振荡,并具有非常长的相移时间(几秒钟)。除了移相以外,还研究了几种退相干机制,包括磁振子的基本激励和晶体磁各向异性,并显示出它们基本上不会影响到室温的相干性。对于小型纳米磁体,磁体的晶体磁各向异性强烈地使光子和自旋数的本征态局部化,从而消除了相干态的电势;对于足够大的纳米磁体,宏自旋近似被破坏,纳米磁体的不同畴可能分别耦合到光子模式。因此,预计最佳纳米磁体尺寸恰好在宏观自旋近似失败的阈值以下。此外,显示出在强耦合的影响下,光(腔场)和自旋(纳米磁体自旋取向)的最初未纠缠的相干态可以被锁相以演变成系统的相干纠缠态。

著录项

  • 作者

    Soykal, Oney Orhunc.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Physics Quantum.;Physics Theory.;Physics Solid State.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号