首页> 外文学位 >Solidification of iron-rich intermetallic phases and their effects on tensile properties in aluminum-copper 206 cast alloys.
【24h】

Solidification of iron-rich intermetallic phases and their effects on tensile properties in aluminum-copper 206 cast alloys.

机译:铝铜206铸造合金中富铁金属间相的凝固及其对拉伸性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

The Al-Cu 206 cast alloys have been widely used in automotive and aerospace industries due to the high strength and good elevated temperature properties. However, this family alloys have an extremely low upper limit for the iron content (usually less than 0.15 wt. %) because the presence of more Fe can cause a great loss of the mechanical properties, particularly the ductility. With the increasing use of the recycled aluminum alloys, the requirement for extremely low iron contents has become a main concern in terms of the manufacturing technique and cost. Therefore, manufacturing premium castings with higher iron contents has become a great challenge.;In this study, the solidification behavior of the iron-rich intermetallics and the effect of alloy composition, cooling rate and solution heat treatment on the iron-rich intermetallics were systematically investigated in 206 cast alloys at 0.15, 0.3 and 0.5 wt. % Fe. The effect of the iron-rich intermetallics on the tensile properties was also evaluated. An optical microscope, a scanning electron microscope and a transmission electron microscope were used to observe the microstructures and analyze the volume fraction of the iron-rich intermetallics as well as the fracture surface. The solidification sequences of 206 cast alloys at 0.15∼0.5 wt. % Fe were well established. The experimental results in the present thesis are divided into four parts.;In the first part, the iron-rich intermetallics in 206 cast alloys at 0.15 wt. % Fe were studied. It was found that Chinese script α-Fe and platelet-like β-Fe can precipitate and coexist in the finally solidified alloy and the individual addition of either Mn or Si promotes the formation of α-Fe and hinders the occurrence of β-Fe. The critical cooling rate to effectively suppress the formation of β-Fe depends on the alloy composition. A casting process map is established to correlate the Mn and Si contents with cooling rate for the 206 cast alloys.;In the second part, the iron-rich intermetallics in 206 cast alloys at 0.3 wt. % Fe were investigated. Platelet β-Fe and Chinese script α-Fe were observed in the solidified samples. Both the α-Fe and β-Fe phases can nucleate on the oxide films. In addition, α-Fe can also nucleate on Al6(FeMnCu) and Al3Ti particles while the earlier formed α-Fe phase can also nucleate the later formed β-Fe phase. In addition, Either Si or Mn favors the transformation of β-Fe into the α-Fe phase. At a combination of both high Mn and high Si, almost all β-Fe platelets can be converted into Chinese script α-Fe. For a cast Al-4.5Cu-0.3Fe alloy, 0.3% Mn and 0.3% Si are required to completely suppress the β-Fe phase.;In the third part, the iron-rich intermetallics in 206 cast alloys at 0.5 wt. % Fe were studied. In addition to the two typical platelet β-Fe and Chinese script α-Fe phases, two extra phases, i.e. Chinese script Alm(FeMn) and platelet Al3(FeMn) were experimentally observed in the solidified alloys for the first time in the 206 cast alloys. Alm(FeMn), α-Fe and Al3(FeMn) are all possible as dominant iron-rich intermetallic phases. The individual addition of Si favors the formation of α-Fe but inhibits the precipitation of β-Fe while the individual addition of high Mn promotes the formation of Al 3(FeMn). The combined addition of both Si and Mn enhances the formation of predominate α-Fe. Furthermore, the formation temperature of each iron-rich intermetallic phase decreases and the stable iron-rich intermetallic is gradually replaced by the metastable phase with increasing cooling rate. There exists a threshold cooling rate to obtain the predominant Chinese script Alm(FeMn) or α-Fe phases.;Finally, the effect of iron-rich intermetallics on the tensile properties of the 206 cast alloys was performed. It was found that the tensile strengths linearly decrease with increasing iron content but higher strength are obtained for the alloys with dominant Chinese script iron-rich intermetallics than those with dominant platelet ones at similar iron levels. The 206 alloys above an iron level of 0.15% are hard to meet the minimum ductility (7%) in artificial overaging treatment (T7). However, the iron content limitation can be extended to 0.3%, or even to 0.5% to meet the 7% elongation in natural aging treatment (T4) condition under well controlled Mn and Si contents, providing the great potential to cast premium 206 alloys at high iron levels.
机译:由于具有高强度和良好的高温性能,Al-Cu 206铸造合金已广泛用于汽车和航空航天工业。但是,该族合金的铁含量上限极低(通常小于0.15重量%),因为存在更多的铁会导致机械性能,特别是延展性的极大损失。随着再循环铝合金的使用的增加,就制造技术和成本而言,对极低铁含量的要求已成为主要关注的问题。因此,制造含铁量较高的优质铸件已成为一个巨大的挑战。本研究系统地研究了富铁金属间化合物的凝固行为以及合金组成,冷却速率和固溶热处理对富铁金属间化合物的影响。在206、0.15、0.3和0.5 wt。铁还评估了富铁金属间化合物对拉伸性能的影响。用光学显微镜,扫描电子显微镜和透射电子显微镜观察显微组织并分析富铁金属间化合物的体积分数以及断裂表面。 206铸造合金在0.15〜0.5 wt。铁的百分比已经确定。本论文的实验结果分为四个部分:第一部分,0.15 wt。%的206铸造合金中的富铁金属间化合物。研究了%Fe。结果发现,汉字α-Fe和片状β-Fe可以在最终凝固的合金中析出并共存,单独添加Mn或Si可促进α-Fe的形成并阻碍β-Fe的发生。有效抑制β-Fe形成的临界冷却速率取决于合金组成。建立了铸造工艺图,以使206铸造合金的Mn和Si含量与冷却速率相关。在第二部分中,以0.3 wt。%的重量计算206铸造合金中的富铁金属间化合物。研究了%Fe。凝固样品中观察到血小板β-Fe和汉字α-Fe。 α-Fe和β-Fe相均可在氧化膜上成核。另外,α-Fe也可以在Al6(FeMnCu)和Al3Ti颗粒上成核,而较早形成的α-Fe相也可以使随​​后形成的β-Fe相成核。另外,Si或Mn都有利于β-Fe向α-Fe相的转变。在高锰和高硅的组合下,几乎所有的β-Fe血小板都可以转化为中文字母α-Fe。对于铸造的Al-4.5Cu-0.3Fe合金,需要0.3%的Mn和0.3%的Si才能完全抑制β-Fe相。第三部分,206铸造合金中的富铁金属间化合物含量为0.5 wt%。研究了%Fe。除了两种典型的血小板β-Fe相和中文字母α-Fe相以外,还首次在206铸件中通过实验观察到了凝固合金中两种额外的相,即中文脚本Alm(FeMn)和血小板Al3(FeMn)。合金。 Alm(FeMn),α-Fe和Al3(FeMn)都可能作为主要的富铁金属间相。单独添加Si有助于形成α-Fe,但抑制β-Fe的沉淀,而单独添加高Mn则促进Al 3(FeMn)的形成。 Si和Mn的组合添加增强了主要的α-Fe的形成。此外,随着冷却速率的增加,每个富铁金属间相的形成温度降低,并且稳定的富铁金属间相逐渐被亚稳相代替。存在一个阈值冷却速率来获得主要的中文脚本Alm(FeMn)或α-Fe相。最后,进行了富铁金属间化合物对206铸造合金的拉伸性能的影响。结果发现,随着铁含量的增加,抗拉强度线性降低,但是在相似的铁含量下,具有富优势的中文脚本富金属金属间化合物的合金的抗拉强度高于具有优势的血小板间金属的合金。铁含量超过0.15%的206种合金在人工过时效处理(T7)中很难满足最小延展性(7%)。然而,在良好控制的Mn和Si含量下,铁含量限制可以扩展到0.3%,甚至可以扩展到0.5%,以满足自然时效处理(T4)条件下7%的延伸率,为铸造优质206合金提供了巨大的潜力。高铁水平。

著录项

  • 作者

    Liu, Kun.;

  • 作者单位

    Universite du Quebec a Chicoutimi (Canada).;

  • 授予单位 Universite du Quebec a Chicoutimi (Canada).;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号