首页> 外文学位 >Mesure de la conductivite hydraulique du depot d'argile Champlain de Lachenaie, Quebec: Theorie et applications.
【24h】

Mesure de la conductivite hydraulique du depot d'argile Champlain de Lachenaie, Quebec: Theorie et applications.

机译:魁北克省Lachenaie的Champlain粘土矿床的水力传导率的测量:理论与应用。

获取原文
获取原文并翻译 | 示例

摘要

The thesis comprises theoretical and experimental elements. For the theoretical part of the project, the finite element codes COMSOL and SEEP/W were used to model field permeability tests. With COMSOL, a displacement-pressure ( u-p) model based on the assumption of a linearly elastic material was used to combine the analyses of clay skeleton deformation and water flow in the porous media. For the experimental part of the project, the Lachenaie clay deposit, near Montreal, Quebec, was characterized in detail. Five types of permeability test were used. In the field, pulse tests and variable-head tests conducted in riser pipes with 52.5 and 12.6 mm inner diameters were conducted. In the laboratory, variable-head tests were conducted in oedometer and triaxial cells.;Results from the numerical simulations were analyzed using non-dimensional velocity graphs. This representation enables comparing the curvature of velocity graphs obtained from different types of test. The numerical results demonstrate that the velocity graph curvature depends on the α parameter, the product of the clay compressibility, the sand filter volume and the inverse of the real or virtual inner section of the observation well riser pipe. Smaller riser pipe diameters and softer soils result in velocity graph curvatures which are more pronounced. The theoretical velocity graph curvature also depends on the chosen hypothesis regarding the displacement of the clay-sand filter interface. The curvature is less pronounced if the displacements are assumed to be free at the clay-sand filter interface.;For pulse tests, the u-p model results clearly demonstrate that the deformation of the clay skeleton is two-fold. First, the cavity holding the sand filter changes volume. For a cavity with a length to diameter ratio greater than 4, a u-p model based on the hypothesis of a linearly elastic material results in a linear relationship between cavity volume and pressure. This cavity expansion follows approximately the Lamé (1852) relationship. Secondly, volume changes occur when pore pressures vary in the soil. If the two types of deformation are modeled with the same elastic parameters (Young's modulus and Poisson's ratio), the α value and the velocity graph curvature for pulse tests are fully determined by the Poisson ratio.;For variable-head tests, the two hypotheses regarding the displacements at the clay-sand filter interface (fixed or free) produce non-dimensional velocity graphs which are equivalent. However, for simulations with free displacements at the interface, the α parameter must take into account the expansion of the sand filter cavity. The Lamé relationship can be used to calculate an effective riser pipe section which takes into account this phenomenon. When this effective section is used, or when the displacements at the interface are fixed, the u-p model results for the case of radial flow correspond to the analytical solution used by Bredehoeft & Papadopulos (1980).;Numerical results obtained with SEEP/W and COMSOL allow the apparent shape factor values obtained by assuming a compressible soil skeleton to be compared with those used with the velocity graph method when a perfectly rigid soil skeleton is assumed. When α is less than 10-2, for the central portion of the velocity graph, the apparent shape factor values agree with those given by the Hvorslev ellipsoid formula multiplied by a factor 1.11. When α is greater than 10-2, the apparent shape factor values increase. For α greater than 1, the apparent shape factors values increase proportionally to α.;When the data of in situ variable-head tests (52.5 mm riser pipe) and triaxial tests are analyzed using standard interpretation methods based on the hypothesis of a perfectly rigid soil skeleton, they produce K values which are equivalent and representative of the large scale clay permeability (clay volume larger than 1 m3). For the upper part of the clay deposit, over an elevation of 5 m, the geometric mean of K is 2.1×10-9 m/s. For elevations lower than 5 m, the geometric mean of K is 1.3×10-9 m/s. Variable-head tests in oedometer cells result in lower K values which are representative of the clay matrix permeability. (Abstract shortened by UMI.).
机译:论文包括理论和实验两个方面。对于该项目的理论部分,使用了有限元代码COMSOL和SEEP / W对现场渗透率测试进行建模。借助COMSOL,基于线性弹性材料假设的位移压力(u-p)模型用于结合对粘土骨架变形和多孔介质中水流的分析。对于该项目的实验部分,详细描述了魁北克蒙特利尔附近的Lachenaie粘土矿床。使用了五种类型的渗透率测试。在现场,在内径为52.5和12.6 mm的立管中进行了脉冲测试和可变扬程测试。在实验室中,在里程表和三轴单元中进行了可变头测试。;使用无量纲速度图分析了数值模拟的结果。这种表示法可以比较从不同类型的测试获得的速度曲线的曲率。数值结果表明,速度曲线曲率取决于α参数,粘土可压缩性,滤砂器体积以及观测井立管的实际或虚拟内部截面的倒数的乘积。立管直径较小和土壤较软会导致速度曲线曲率更加明显。理论速度曲线曲率还取决于所选的关于粘土-砂滤池界面位移的假设。如果假定在粘土-砂滤池界面处的位移是自由的,则曲率不太明显。对于脉冲测试,u-p模型结果清楚地表明,粘土骨架的变形是双重的。首先,容纳砂滤器的空腔会改变体积。对于长径比大于4的型腔,基于线性弹性材料假设的u-p模型导致型腔体积与压力之间呈线性关系。这种空腔膨胀大致遵循Lamé(1852)关系。其次,当土壤中的孔隙压力变化时,体积会发生变化。如果用相同的弹性参数(杨氏模量和泊松比)对两种类型的变形建模,则脉冲测试的α值和速度图曲率完全由泊松比确定;对于可变头测试,这两个假设关于粘土-砂滤器界面(固定的或自由的)的位移,可以得到等效的无量纲速度图。但是,对于在界面处具有自由位移的模拟,α参数必须考虑砂滤池空腔的膨胀。 Lamé关系可用于计算考虑到此现象的有效立管段。当使用该有效截面时,或当界面处的位移固定时,径向流情况下的向上模型结果对应于Bredehoeft&Papadopulos(1980)所使用的分析解决方案。SEEP / W和COMSOL允许将假定可压缩土壤骨架的情况下获得的表观形状因子值与采用速度图法的情况(假设完全刚性土壤骨架)进行比较。当α小于10-2时,对于速度图的中心部分,表观形状因子值与Hvorslev椭球公式乘以因子1.11给出的值一致。当α大于10-2时,表观形状因子值增加。当α大于1时,表观形状因子值与α成正比增加;当基于理想刚度的假设使用标准解释方法分析原位可变水头试验(52.5 mm立管)和三轴试验的数据时在土壤骨架中,它们产生的K值相等,并代表大规模粘土的渗透性(粘土体积大于1 m3)。对于粘土沉积的上部,在5 m的高程上,K的几何平均值为2.1×10-9 m / s。对于低于5 m的海拔,K的几何平均值为1.3×10-9 m / s。里程表单元中的可变头测试导致较低的K值,该值代表了粘土基质的渗透性。 (摘要由UMI缩短。)。

著录项

  • 作者

    Duhaime, Francois.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Geological.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 528 p.
  • 总页数 528
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号