首页> 外文学位 >Comparative assessment of five cellulosic biofuel management strategies: Implications to soil carbon and nitrogen dynamics.
【24h】

Comparative assessment of five cellulosic biofuel management strategies: Implications to soil carbon and nitrogen dynamics.

机译:五个纤维素生物燃料管理策略的比较评估:对土壤碳氮动态的影响。

获取原文
获取原文并翻译 | 示例

摘要

Potential changes in cropping practices to accommodate the direct utilization of plant biomass for the production of second-generation cellulosic biofuels have raised concerns over unintended environmental effects. We focused on changes in: i) soil C pools, ii) N cycling capacity, and iii) microbial community structure. We hypothesized that cropping practices (e.g. plant selection, residue removal) would influence soil microbial community structure and functional capacity, altering soil C and N turnover compared to conventional agricultural practices. Replicated plots at the Purdue Water Quality Field Station (WQFS) were used in a comparative assessment of soil quality for cellulosic biofuel management and conventional systems, with surface soils sampled four times over a three-year establishment period. The biofuel systems were no-till continuous corn (Zea mays; CR), Miscanthus x giganteus (MS), tall grass prairie dominated by big bluestem (Andropogon gerardii; PR), dual-purpose sorghum (Sorghum bicolor; hybrid PU8168X; SG), and upland switchgrass (Panicum virgatum; c.v.Shawnee; SW). Soil C pools were evaluated by characterizing the physiochemical properties, including total organic C (TOC), permanganate oxidizable C (POXC), total nitrogen (TN), and soil pH, and the biological measures of microbial biomass using total phospholipid fatty acid - phosphate (PLFA-PO4), microbial C utilization via basal respiration (BR), and response to glucose addition (SIR). Shifts in N cycling pathways were estimated by soil assays of dehydrogenase (DH) and urease (UR) enzyme activity, net N mineralization (NM), acetylene reduction (AR), nitrification potential (NP) and denitrification potential (DP), and by profiling the diversity of functional genes essential for nitrogen fixation (nitrogenase, nifH), nitrification (ammonia monooxygenase, amoA), and denitrification (nitrite reductase, nirK) by PCR-denaturing gradient electrophoresis (PCR-DGGE). Changes in the size and structure of the microbial community were judged by quantifying differences in PLFA signatures and by evaluating fungal diversity via PCR-DGGE targeting the internal transcribed spacer (ITS) rRNA region. We observed no significant differences between systems in the TOC or POXC. However, cellulosic harvesting in CR, MS and in PR caused relative declines in BR and SIR. Based on multivariate statistical analysis of physiochemical (TOC, POXC, TN, pH) and microbial (PLFA-PO 4, SIR, BR) parameters, we highlight the strength of BR as an early predictor of changes in soil C dynamics. The N cycle was impacted by plant selection and management, showing a distinct polarization in both multivariate analysis of N transformations and composite analysis of N functional gene diversity between the minimal management in the PR system and the high intensity practices of CR. With time, SG, SW and MS developed unique N functional community structures and trended towards similarity with the PR system. We noted that residue removal from continuous corn did not alter soil enzymatic activity, but did shift functional community diversity. Evaluation of PLFA and ITS-DGGE profiles supported the overall distinction of PR, SW and to a lesser extent SG from all other cropping systems. It is clear that cropping system selection is highly influential on the soil microbial community and critical belowground C and N processes, which may influence long-term ecosystem function. The intermediate nature of dual-purpose sorghum with respect to soil C and N dynamics supports this crop as an alternative annual biomass cropping system. Furthermore, pursuit of dedicated perennial biofuels may offer an avenue to enhance agroecosystem services while supporting a bioenergy economy.
机译:为了适应直接利用植物生物质生产第二代纤维素生物燃料的作物种植方式的潜在变化,引起了人们对意外环境影响的担忧。我们关注以下方面的变化:i)土壤碳库,ii)氮循环能力,和iii)微生物群落结构。我们假设耕作实践(例如植物选择,残留去除)将影响土壤微生物群落结构和功能能力,与常规农业实践相比会改变土壤碳和氮的转化率。普渡水质现场站(WQFS)的重复样地用于纤维素生物燃料管理和常规系统的土壤质量比较评估,在三年的建立期内对地表土壤采样了四次。生物燃料系统为免耕连续玉米(Zea mays; CR),芒草x giganteus(MS),以大蓝茎为主的高草草原(Andropogon gerardii; PR),两用高粱(Sorghum bicolor; hybrid PU8168X; SG) ,以及旱switch柳(Panicum virgatum; cvShawnee; SW)。通过表征其理化特性来评估土壤碳库,包括总有机碳(TOC),高锰酸盐可氧化碳(POXC),总氮(TN)和土壤pH值,以及使用总磷脂脂肪酸-磷酸盐对微生物生物量的生物学测量(PLFA-PO4),通过基础呼吸的微生物C利用量(BR)和对葡萄糖添加的反应(SIR)。通过土壤测定脱氢酶(DH)和脲酶(UR)的酶活性,净氮矿化(NM),乙炔还原(AR),硝化势(NP)和反硝化势(DP)估算N循环路径的变化通过PCR变性梯度电泳(PCR-DGGE)分析了固氮(硝化酶,nifH),硝化(氨单加氧酶,amoA)和反硝化(亚硝酸还原酶,nirK)必不可少的功能基因的多样性。通过定量PLFA标记的差异并通过靶向内部转录间隔区(ITS)rRNA区域的PCR-DGGE评估真菌多样性来判断微生物群落大小和结构的变化。我们发现TOC或POXC中的系统之间没有显着差异。但是,CR,MS和PR中的纤维素收割导致BR和SIR相对下降。基于对理化参数(TOC,POXC,TN,pH)和微生物参数(PLFA-PO 4,SIR,BR)的多变量统计分析,我们强调了BR作为土壤C动力学变化的早期预测指标的优势。 N周期受到植物选择和管理的影响,在PR系统的最小管理和CR的高强度实践之间,N转化的多变量分析和N功能基因多样性的复合分析均表现出明显的两极分化。随着时间的流逝,SG,SW和MS开发了独特的N功能社区结构,并趋向于与PR系统相似。我们注意到,从连续玉米中去除残留物不会改变土壤酶活性,但会改变功能性群落的多样性。对PLFA和ITS-DGGE配置文件的评估支持了PR,SW和SG在所有其他种植系统中的总体区别。显然,种植系统的选择对土壤微生物群落以及地下关键的碳和氮过程有很大的影响,这可能会影响长期的生态系统功能。两用高粱在土壤碳和氮动力学方面的中间性质支持该作物作为年度生物量替代作物种植系统。此外,寻求专用的多年生生物燃料可能为增强农业生态系统服务同时支持生物能源经济提供一条途径。

著录项

  • 作者

    Orr, Mary-Jane N.E.J.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biology Microbiology.;Agriculture Soil Science.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号