首页> 外文学位 >Experimental study of twin opposing microvortex flows in an opto-electrokinetic microfluidic platform using micronresolution particle image velocimetry technique.
【24h】

Experimental study of twin opposing microvortex flows in an opto-electrokinetic microfluidic platform using micronresolution particle image velocimetry technique.

机译:使用微米分辨率粒子图像测速技术在光电动微流平台中进行双反向微涡流的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

A novel technique for the microvortex flow in an opto-electrokinetic microfluidic platform is presented here. A moderately focused laser beam on a pair of indium tin oxide (ITO) electrodes produced two microvortices. This is a novel flow phenomenon consisting of twin opposing microvortices (TOMVs). The vortices contain a fast and strong jet flow region between them. The TOMV flow can be controlled and manipulated by non-uniform electric fields and optical illumination. The non-uniform electric fields were generated by a pair of ITO electrodes partially covered with a SU-8 film. The voltage and frequency of the applied AC signal was varied to study the effect on the flow. Optical illumination, from an infrared laser beam of 1064 nm was controlled by adjusting its power as well as its location relative to the electrodes. In situ generation and control of the TOMV flow allow it to be used as a micro-mixer or pump.;The TOMV flow depends on: (1) laser beam location on the electrode, (2) voltage, (3) frequency, and (4) laser beam power. The influence of each parameter was analyzed by micron-resolution particle image velocimetry (µPIV) technique. The location of the laser spot relative to the electrode changed causing the direction and pattern of the TOMV flow, to produce a symmetric, asymmetric or reversed flow, depending on the beam's location. The strength of the TOMV flow was linearly dependent on the voltage in the range between 3–9 Vp-p and laser power in the range between 0.2 to 1.0 W. Frequencies ranging from 3 kHz to 1 MHz can strongly influence the flow strength, in which its dependence follows the logarithmic-Gaussian curve showing the strongest flow at ∼ 107 kHz. The velocities along a cross-section as well as vortex trajectories were analyzed. The experiments presented herein provide practical guidance into applications of microfluidic manipulation in the field of biofluids and biological assay.;The previously described TOMV flows were generated mostly in suspensions of 1µm fluorescent polystyrene particles with a single laser beam. In order to investigate the underlying mechanism of the TOMV flow and its feasibility for manipulating various types of suspensions, suspensions of 2µm particles as well as milk emulsions were also used. The superposition of two TOMV flows was demonstrated with two laser beams. Our results demonstrate that this opto-electrokinetic technique has great potential for dynamically manipulating micro-fluid flows.
机译:这里介绍了一种在光电子微流体平台中微涡流的新技术。在一对铟锡氧化物(ITO)电极上的适度聚焦激光束产生了两个微涡旋。这是由双相对微涡(TOMV)组成的新型流动现象。涡旋之间包含一个快速而强劲的射流区域。可以通过非均匀电场和光学照明来控制和操纵TOMV流量。非均匀电场是由一对被SU-8膜部分覆盖的ITO电极产生的。改变所施加的AC信号的电压和频率以研究对流动的影响。通过调节1064 nm红外激光的功率以及其相对于电极的位置,可以控制1064 nm红外激光束的光照。 TOMV流量的原位生成和控制使其可以用作微型混合器或泵.TOMV流量取决于:(1)激光束在电极上的位置,(2)电压,(3)频率和(4)激光束功率。通过微米分辨率粒子图像测速技术(µPIV)分析了每个参数的影响。激光点相对于电极的位置发生了变化,从而导致TOMV流动的方向和模式,从而根据射束的位置产生对称,不对称或反向流动。 TOMV流的强度与3-9 Vp-p范围内的电压和0.2至1.0 W范围内的激光功率呈线性关系。3kHz至1 MHz的频率会强烈影响流强,它的依赖性遵循对数-高斯曲线,显示在约107 kHz处的最强流动。分析了沿横截面的速度以及涡旋轨迹。本文介绍的实验为微流控技术在生物流体和生物测定领域的应用提供了实用指导。先前描述的TOMV流动主要是在单个激光束中1μm荧光聚苯乙烯颗粒的悬浮液中产生的。为了研究TOMV流动的潜在机理及其​​处理各种类型悬浮液的可行性,还使用了2μm颗粒的悬浮液以及乳状乳液。用两个激光束演示了两个TOMV流的叠加。我们的结果表明,这种光电动力学技术具有动态操纵微流体流动的巨大潜力。

著录项

  • 作者

    Park, Choongbae.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号