首页> 外文学位 >Integration of computational models and experimental characterization to study internal frost damage in cementitious materials.
【24h】

Integration of computational models and experimental characterization to study internal frost damage in cementitious materials.

机译:集成计算模型和实验表征,以研究水泥质材料内部的霜冻破坏。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this doctoral research is to investigate the internal frost damage due to crystallization pore pressure in porous cement-based materials by developing computational and experimental characterization tools. As an essential component of the U.S. infrastructure system, the durability of concrete has significant impact on maintenance costs. In cold climates, freeze-thaw damage is a major issue affecting the durability of concrete. The deleterious effects of the freeze-thaw cycle depend on the microscale characteristics of concrete such as the pore sizes and the pore distribution, as well as the environmental conditions. Recent theories attribute internal frost damage of concrete is caused by crystallization pore pressure in the cold environment. The pore structures have significant impact on freeze-thaw durability of cement/concrete samples. The scanning electron microscope (SEM) and transmission X-ray microscopy (TXM) techniques were applied to characterize freeze-thaw damage within pore structure. In the microscale pore system, the crystallization pressures at sub-cooling temperatures were calculated using interface energy balance with thermodynamic analysis. The multi-phase Extended Finite Element Modeling (XFEM) and bilinear Cohesive Zone Modeling (CZM) were developed to simulate the internal frost damage of heterogeneous cement-based material samples. The fracture simulation with these two techniques were validated by comparing the predicted fracture behavior with the captured damage from compact tension (CT) and single-edge notched beam (SEB) bending tests. The study applied the developed computational tools to simulate the internal frost damage caused by ice crystallization with the two dimensional (2-D) SEM and three dimensional (3-D) reconstructed SEM and TXM digital samples. The pore pressure calculated from thermodynamic analysis was input for model simulation. The 2-D and 3-D bilinear CZM predicted the crack initiation and propagation within cement paste microstructure. The favorably predicted crack paths in concrete/cement samples indicate the developed bilinear CZM techniques have the ability to capture crack nucleation and propagation in cement-based material samples with multiphase and associated interface. By comparing the computational prediction with the actual damaged samples, it also indicates that the ice crystallization pressure is the main mechanism for the internal frost damage in cementitious materials.
机译:这项博士研究的目的是通过开发计算和实验表征工具来研究由于多孔水泥基材料中的结晶孔隙压力引起的内部霜冻破坏。作为美国基础设施系统的重要组成部分,混凝土的耐久性会对维护成本产生重大影响。在寒冷的气候中,冻融损坏是影响混凝土耐久性的主要问题。冻融循环的有害影响取决于混凝土的微观特性,例如孔径和孔分布以及环境条件。最近的理论归因于混凝土内部的霜冻破坏是由寒冷环境中的结晶孔隙压力引起的。孔结构对水泥/混凝土样品的冻融耐久性具有重大影响。扫描电子显微镜(SEM)和透射X射线显微镜(TXM)技术用于表征孔结构内的冻融损伤。在微孔系统中,使用界面能平衡和热力学分析来计算过冷温度下的结晶压力。开发了多相扩展有限元模型(XFEM)和双线性内聚区模型(CZM)来模拟非均质水泥基材料样品的内部冻害。通过比较预测的断裂行为与压缩张力(CT)和单边缺口梁(SEB)弯曲测试捕获的损伤,验证了这两种技术的断裂模拟。该研究应用了开发的计算工具,利用二维(2-D)SEM和三维(3-D)重构SEM和TXM数字样本来模拟由冰结晶引起的内部霜冻破坏。通过热力学分析计算出的孔隙压力被输入到模型模拟中。 2-D和3-D双线性CZM预测了水泥浆体微观结构中的裂纹萌生和扩展。在混凝土/水泥样品中可预测的裂缝路径表明,开发的双线性CZM技术具有捕获具有多相及相关界面的水泥基材料样品中裂纹成核和扩展的能力。通过将计算预测值与实际受损样品进行比较,还表明,冰晶压力是胶结材料内部霜冻破坏的主要机理。

著录项

  • 作者

    Ng, Kenny.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Applied Mechanics.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号