首页> 外文学位 >Stresses in vocal folds: A numerical investigation under vibration, impact and surface adhesion conditions.
【24h】

Stresses in vocal folds: A numerical investigation under vibration, impact and surface adhesion conditions.

机译:声带中的压力:在振动,冲击和表面粘附条件下的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

The aim of this study is to determine and characterize mechanical stresses in the vocal fold (VF) tissues during the phonation process. In particular the phonation process is simulated under conditions of self-oscillation, high- amplitude vibration, collision and de-cohesion. A bi-directionally coupled computational model of the fluid-structure interaction between the VF structure and the glottal air flow is the main object of analysis in this investigation. Physically realistic biomechanical properties and constitutive models are used to define the VF tissue and glottal air flow behavior. Governing equations of each physical domain are solved using commercially-available software. Advanced capabilities in model design, execution and post-processing phase are taken leverage of. The segregated solution approach gives rise to self-oscillation of the VFs, wherein periodic oscillations are computed without external periodic forcing. Overall air flow and VF deformation characteristics are found to fall within the range of previously measured data. Stresses within the VF volume are considered to govern interstitial flow through the VF tissue from a biphasic theory based poroelastic model. A decomposition framework is introduced which considers the total stress field to comprise of a mean, a vibratory and a collision-induced component. The component fields that are obtained as a result of the decomposition are shown to scale with externally measurable dynamical quantities. This approach is separately validated with respect to experimental observations from a physical self-oscillating model of the VFs. Taken together, the decomposition framework and interstitial flow model enable isolating the effects of mean, vibratory and collision-induced deformation on systemic hydration of the VF. Progress is also made in explaining the effect of glottal surface adhesion due to the airway surface liquid (ASL) on VF deformation characteristics. An interface debonding model is used to define the constitutive behavior of the ASL. A range of parameters is considered to simulate different conditions of ASL biomechanical behavior. The previously developed collision model is expanded to include the development of tensile tractions on the VF surface. It is demonstrated that the ASL, even when considered to have relatively low energy content, is able to induce important changes in the local and global features of the interaction of the VF structure with the flow. Definitions of features of VF motion important in the context of surface adhesion are introduced. Changes in the features in dependence of ASL properties are characterized in detail in this study for the first time. Two exploratory investigation are conducted to understand the importance of functional gradation of the VF tissue modulus, and that of geometric detail of VF structure in the presence of heterogeneity and anisotropy. Results from the investigation of functional gradation show that variation of elastic modulus along the length of the VF can significantly alter the way the VF structure interacts with the air flow, even when collision effects are neglected. Detailed analysis of the behavior of the coupled system under varying degrees of functional gradation provide fundamental insight into understanding the cause of perceived differences in voice quality between smokers and non-smokers. The results from the investigation of geometric effects provide a rational basis for construction of a canonical model that can better represent the dynamical behavior of subject-specific VF structure.
机译:这项研究的目的是确定和表征发声过程中声带(VF)组织中的机械应力。尤其是在自激,高振幅振动,碰撞和去内聚的条件下模拟了发声过程。 VF结构和声门气流之间的流固耦合的双向耦合计算模型是本研究的主要研究对象。物理上逼真的生物力学特性和本构模型用于定义VF组织和声门气流行为。使用商业上可用的软件求解每个物理域的控制方程。利用了模型设计,执行和后处理阶段中的高级功能。隔离解决方案方法导致了VF的自激,其中无需外部周期性强迫即可计算出周期性振荡。发现总的空气流量和VF变形特性在先前测量数据的范围内。从基于双相理论的多孔弹性模型,可以认为VF体积内的应力可控制通过VF组织的间隙流动。引入分解框架,该框架考虑总应力场包括平均值,振动分量和碰撞诱发分量。分解结果显示的分量场显示为具有可外部测量的动态量。对于来自VF的物理自振荡模型的实验观察,该方法已得到单独验证。综合起来,分解框架和间隙流动模型能够隔离均值,振动和碰撞诱发的变形对VF全身水化的影响。在解释由于气道表面液(ASL)引起的声门表面粘附对VF变形特性的影响方面也取得了进展。接口分离模型用于定义ASL的本构行为。可以考虑一系列参数来模拟ASL生物力学行为的不同条件。先前开发的碰撞模型被扩展为包括在VF表面上拉伸牵引力的开发。事实证明,即使被认为能量含量相对较低,ASL仍能引起VF结构与流体相互作用的局部和全局特征发生重要变化。介绍了在表面粘附的情况下重要的VF运动特征的定义。这项研究首次详细描述了依赖于ASL特性的特征变化。进行了两次探索性研究,以了解VF组织模量的功能渐变的重要性以及在存在异质性和各向异性的情况下VF结构的几何细节的重要性。功能梯度研究的结果表明,沿着弹性纤维长度方向的弹性模量变化可以显着改变弹性纤维结构与气流相互作用的方式,即使忽略碰撞效应也是如此。在不同功能等级下对耦合系统行为的详细分析,为了解吸烟者和非吸烟者之间语音质量差异的原因提供了基本的见识。几何效应研究的结果为构建典范模型提供了合理的基础,该典范模型可以更好地表示特定对象VF结构的动力学行为。

著录项

  • 作者

    Bhattacharya, Pinaki.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号