首页> 外文学位 >Investigations of oxidative stress effects and their mechanisms in rat brain after systemic administration of ceria engineered nanomaterials.
【24h】

Investigations of oxidative stress effects and their mechanisms in rat brain after systemic administration of ceria engineered nanomaterials.

机译:二氧化铈工程纳米材料全身给药后大鼠脑中氧化应激作用及其机制的研究。

获取原文
获取原文并翻译 | 示例

摘要

Advancing applications of engineered nanomaterials (ENM) in various fields create the opportunity for intended (e.g. drug and gene delivery) or unintended (e.g. occupational and environmental) exposure to ENM. However, the knowledge of ENM-toxicity is lagging behind their application development. Understanding the ENM hazard can help us to avoid potential human health problems associated with ENM applications as well as to increase their public acceptance. Ceria (cerium [Ce] oxide) ENM have many current and potential commercial applications. Beyond the traditional use of ceria as an abrasive, the scope of ceria ENM applications now extends into fuel cell manufacturing, diesel fuel additives and for therapeutic intervention as a putative antioxidant. However, the biological effects of ceria ENM exposure have yet to be fully defined. Both pro-and anti-oxidative effects of ceria ENM exposure are repeatedly reported in literature. EPA, NIEHS and OECD organizations have nominated ceria for its toxicological evaluation. All these together gave us the impetus to examine the oxidative stress effects of ceria ENM after systemic administration.;Induction of oxidative stress is one of the primary mechanisms of ENM toxicity. Oxidative stress plays an important role in maintaining the redox homeostasis in the biological system. Increased oxidative stress, due to depletion of antioxidant enzymes or molecules and / or due to increased production of reactive oxygen (ROS) or nitrogen (RNS) species may lead to protein oxidation, lipid peroxidation and/or DNA damage. Increased protein oxidation or lipid peroxidation together with antioxidant protein levels and activity can serve as markers of oxidative stress.;To investigate the oxidative stress effects and the mechanisms of ceria-ENM toxicity, fully characterized ceria ENM of different sizes (∼ 5nm, 15nm, 30nm, 55nm and nanorods) were systematically injected into rats intravenously in separate experiments. Three brain regions (hippocampus, cortex and cerebellum) were harvested from control and ceria treated rats after various exposure periods for oxidative stress assessment. The levels of oxidative stress markers viz. protein carbonyl (PC), 3-nitrotyrosine (3NT), and protein bound 4-hydroxy-2-trans-nonenal (HNE) were evaluated for each treatment in each control and treated rat organ. Further, the levels and activities of antioxidant proteins, such as catalase, glutathione peroxidase (GPx), glutathione reductase (GR), super oxide dismutase (SOD), were measured together with levels of heat shock proteins heme oxygenase -1 and 70 (HO-1 and Hsp-70). In addition, the levels of pro-inflammatory cytokines IL-1beta, TNF-alpha, pro-caspase-3, and autophagy marker LC-3A/B were measured by Western blot technique. In agreement with the literature-proposed model of oxidative stress hierarchy mechanism of ENM-toxicity, the statistical analysis of all the results revealed that the ceria ENM-induced oxidative stress mediated biological response strongly depends on the exposure period and to some extent on the size of ceria ENM. More specifically, a single intravenous injection of ceria ENM induced tier-1 (phase-II antioxidant) response after shorter exposure periods (1 h and 20 h) in rat brain. Upon failure of tier-1 response after longer exposure periods (1 d to 30 d), escalated oxidative stress consequently induced tier-2 and tier-3 oxidative stress responses. Based on our observations made at chronic exposure period (90 d) after the single i.v. injection of ceria ENM, we could extend the model of oxidative stress hierarchy mechanisms for ceria-ENM-induced toxicity. Considering the evaluation of all the oxidative stress indices measured in 3-brain regions, oxidative stress effects were more prominent in hippocampus and the least in cerebellum, but no specific pattern or any significant difference was deduced.;Keyword: Ceria, cerium oxide, nanomaterial, nanoparticles, nanotoxicity, oxidative stress, phase-II enzymes.
机译:工程纳米材料(ENM)在各个领域中的先进应用为有意(例如药物和基因传递)或意外(例如职业和环境)接触创造了机会。但是,ENM毒性的知识滞后于其应用开发。了解ENM危害可以帮助我们避免与ENM应用相关的潜在人类健康问题,并提高公众的接受度。二氧化铈(铈[Ce]氧化物)ENM具有许多当前和潜在的商业应用。除了将二氧化铈用作磨料的传统用途之外,二氧化铈ENM的应用范围现在扩展到燃料电池制造,柴油添加剂和用于治疗干预的公认抗氧化剂。但是,氧化铈ENM暴露的生物学效应尚未完全确定。氧化铈ENM暴露的促氧化作用和抗氧化作用在文献中屡有报道。 EPA,NIEHS和OECD组织已提名氧化铈进行毒理学评估。所有这些共同为我们提供了全身给药后研究氧化铈ENM氧化应激作用的动力。氧化应激的诱导是ENM毒性的主要机制之一。氧化应激在维持生物系统中氧化还原稳态方面起着重要作用。由于抗氧化剂酶或分子的消耗和/或由于活性氧(ROS)或氮(RNS)种类增加的产生,增加的氧化应激可能导致蛋白质氧化,脂质过氧化和/或DNA损伤。蛋白质氧化作用或脂质过氧化作用的增强以及抗氧化剂蛋白质水平和活性的提高可以作为氧化应激的标志。为了研究氧化应激的作用以及氧化铈-ENM毒性的机理,充分表征了不同尺寸(〜5nm,15nm,在单独的实验中,将30nm,55nm和纳米棒系统地静脉内注射到大鼠中。在不同的暴露时间后,从对照和经二氧化铈处理的大鼠中收获三个大脑区域(海马,皮层和小脑),以评估氧化应激。氧化应激标志物的水平即。对于每种对照和处理过的大鼠器官中的每种处理,均评估了蛋白质羰基(PC),3-硝基酪氨酸(3NT)和结合了蛋白质的4-羟基-2-反式壬烯醛(HNE)。此外,还测量了抗氧化蛋白(如过氧化氢酶,谷胱甘肽过氧化物酶(GPx),谷胱甘肽还原酶(GR),超氧化物歧化酶(SOD))的水平和活性,以及​​热休克蛋白血红素加氧酶-1和70(HO -1和Hsp-70)。另外,通过Western印迹技术测量促炎细胞因子IL-1β,TNF-α,促胱天蛋白酶3和自噬标记物LC-3A / B的水平。与文献中提出的ENM毒性的氧化应激分级机制模型相一致,对所有结果的统计分析表明,二氧化铈ENM诱导的氧化应激介导的生物反应在很大程度上取决于暴露时间,并在一定程度上取决于大小二氧化铈ENM。更具体地说,在大鼠脑中较短的暴露时间(1小时和20小时)后,单次静脉内注射二氧化铈ENM会诱导1级(II期抗氧化剂)反应。在较长的暴露时间(1 d至30 d)后,如果1级响应失败,则氧化应激升级会导致2级和3级氧化应激响应。根据我们在单次静脉注射后在慢性暴露期(90 d)的观察结果。注射二氧化铈-ENM,可以扩展氧化铈-ENM诱导的毒性的氧化应激层次模型。考虑到对三脑区所有氧化应激指标的评估,氧化应激效应在海马区更为突出,在小脑中最为明显,但未推断出具体的模式或任何显着差异。关键词:二氧化铈,氧化铈,纳米材料,纳米颗粒,纳米毒性,氧化应激,II期酶。

著录项

  • 作者

    Hardas, Sarita S.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Chemistry General.;Nanoscience.;Health Sciences Toxicology.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 315 p.
  • 总页数 315
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号