首页> 外文学位 >Co-firing of Lignite with Peat and White Pine in a Pilot Scale Bubbling Fluidized Bed -- Air Emissions and Feedstock Reactivity.
【24h】

Co-firing of Lignite with Peat and White Pine in a Pilot Scale Bubbling Fluidized Bed -- Air Emissions and Feedstock Reactivity.

机译:在中试鼓泡流化床中褐煤与泥煤和白松的共烧-空气排放和原料反应性。

获取原文
获取原文并翻译 | 示例

摘要

The increasing awareness of the environmental impact of fossil fuels (mainly coal) combustion, which leads to high levels of CO2, NO x, SO2, mercury and particulate emissions, has motivated research for potential alternatives such as switching from fossil fuels to biomass, or co-firing of both fuels. Co-firing proved to be a promising technology for large scale use of biomass for energy production, as it makes use of the extensive infrastructure associated with the existing coal-based power systems, and requires only relatively modest additional capital investment to achieve a significant CO2 reduction. The research objectives of the present work were to: (1) Investigate on combustion/cofiring lignite and woodwaste/peat in a 16.19 kW pilot-scale fluidized-bed combustor, and effects of fuel-blending ratios, excess air, particle size and moisture contents on CO2, CO, SO2, and NOx emissions in the combustion/co-combustion; and (2) Study the combustion reactivity of lignite, woodwaste, peat, and the blended fuels using thermogravimetric analysis (TGA).;The combustion/co-combustion behaviour and kinetics of lignite, peat and woodwaste (white pine sawdust) and their blends were investigated using non-isothermal thermogravimetric analysis (TGA) technique. The TGA experiments were performed for pure fuels and compared to blended fuels with respect to their performance in air over a temperature range of 25-700 °c and at a heating rate of 20°C/min. The overall kinetic de-volatilization-combustion reactions for these fuels and their blends were evaluated using the power law model. Using the differential thermal analysis (DTA) data and applying the least square multi-linear regression method, kinetic parameters for the overall devolatilization/combustion reactions including the apparent activation energy (Ea), reaction order ( n) and the pre-exponential (A) factor were calculated for each homogeneous fuel and the lignite-peat or lignite-pine sawdust blended fuels (50 wt%-50 wt%%). The wood waste and peat demonstrated a higher reactivity when compared to lignite. The activation energies for lignite, peat, and white pine were determined to be 124.10 kJ/mol, 83.95 kJ/mol, and 98.23 kJ/mol, respectively. Compared with the devolatilization/combustion of homogenous solid fuels, blending peat/white pine with lignite resulted in synergistic effects, enhancing the combustion reactivity of each component fuel.;The effects of particle size (pellets or crushed), the fuel blending ratios (0, 20%, 50%, 80% and 100% on a heat input basis), moisture content and excess air ratio on combustion efficiency and air emissions (CO2 , CO, SO2 and NOx) from combustion/co-combustion of woodwaste or peat and lignite were examined in a pilot-scale bubbling fluidized bed combustor. The results showed that properly controlling the co-firing parameters could achieve an increase in combustion efficiency and a reduction of air emissions. Compared to solid fuels in fine particles ( 4mm), fluidized-bed combustion of solid fuels in the pellet form could obtain higher dense-phase temperatures and a more uniform temperature profile along the fluidized-bed column and achieve a much higher efficiency (>94%), while yielding minimal effects on the emissions of SO2 and NOx. Co-firing of lignite and white pine pellets at an increasing blending ratio led to a proportional reduction in both SO2 and NOx emissions. Co-firing of peat and lignite led to an increase in SO2 emission, but co-combustion of peat (0-100%) and lignite resulted in a reduction in NOx emission. The presence of moisture in the fuels promotes the combustion of solid fuels by the steam gasification/reforming and gas-water shift reactions, leading to increases in combustion efficiency and CO emissions, and the combustion of fuels of a higher moisture content led to a decrease in SO2 emission, but an increase in NOx emission. To achieve higher combustion efficiency and lower air emissions for combustion/co-combustion in a fluidized bed combustor, a too high excess air ratio (>40%) should be avoided.
机译:人们越来越意识到化石燃料(主要是煤炭)燃烧对环境的影响,导致高水平的CO2,NOx,SO2,汞和颗粒物排放,这激发了人们对潜在替代品的研究,例如从化石燃料转换为生物质,或者两种燃料共烧。共燃被证明是大规模利用生物质进行能源生产的一种有前途的技术,因为它利用了与现有煤基电力系统相关的广泛基础设施,并且仅需要相对适度的额外资本投入即可实现大量的二氧化碳排放。减少。本研究的研究目标是:(1)研究中试规模为16.19 kW的流化床燃烧器燃烧/共燃褐煤和木屑/豌豆,以及燃料混合比,过量空气,粒径和水分的影响燃烧/共燃烧中CO2,CO,SO2和NOx排放的含量; (2)利用热重分析(TGA)研究褐煤,木屑,泥煤和混合燃料的燃烧反应性。褐煤,泥煤和木屑(白松木屑)及其混合物的燃烧/共燃烧行为和动力学。使用非等温热重分析(TGA)技术进行了研究。 TGA实验是针对纯燃料进行的,并将其与混合燃料在25-700°C的温度范围内以及20°C / min的升温速率下在空气中的性能进行比较。使用幂律模型评估了这些燃料及其混合物的整体动力学脱挥发分燃烧反应。使用差热分析(​​DTA)数据并应用最小二乘多元线性回归方法,用于整体挥发/燃烧反应的动力学参数,包括表观活化能(Ea),反应阶数(n)和指数前(A)计算每种均质燃料和褐煤-豌豆或褐煤-松木屑混合燃料(50 wt%-50 wt %%)的系数。与褐煤相比,木材废料和泥炭具有更高的反应性。测定的褐煤,泥煤和白松的活化能分别为124.10 kJ / mol,83.95 kJ / mol和98.23 kJ / mol。与均质固体燃料的脱挥发分/燃烧相比,将泥炭/白松与褐煤混合会产生协同效应,增强每种组分燃料的燃烧反应性;颗粒尺寸(小丸或压碎)的影响,燃料混合比(0 ,20%,50%,80%和100%(以热量输入为基础),水分含量和过量空气比率对木材废物或泥炭燃烧/共燃烧的燃烧效率和空气排放量(CO2,CO,SO2和NOx)的影响在中试鼓泡流化床燃烧器中检查了褐煤和褐煤。结果表明,适当控制共燃参数可以提高燃烧效率并减少空气排放。与细颗粒​​(<4mm)的固体燃料相比,颗粒状固体燃料的流化床燃烧可以获得更高的密相温度和沿流化床塔的温度分布更均匀,并且效率更高(> 94%),而对SO2和NOx的排放影响最小。以增加的混合比同时燃烧褐煤和白松球团粒导致SO2和NOx排放量成比例减少。泥炭和褐煤的共烧导致SO2排放增加,但是泥炭(0-100%)和褐煤的共燃烧导致NOx排放减少。燃料中水分的存在通过蒸汽气化/重整和气-水变换反应促进了固体燃料的燃烧,从而导致燃烧效率和CO排放量增加,水分含量较高的燃料的燃烧导致其燃烧效率的降低。 SO2排放量增加,但NOx排放量增加。为了在流化床燃烧器中实现更高的燃烧效率和更低的燃烧/共燃烧空气排放,应避免过高的过量空气比率(> 40%)。

著录项

  • 作者

    Badour, Chadi.;

  • 作者单位

    Lakehead University (Canada).;

  • 授予单位 Lakehead University (Canada).;
  • 学科 Engineering Chemical.;Engineering Environmental.
  • 学位 M.Sc.Eng.
  • 年度 2010
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号