首页> 外文学位 >Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine.
【24h】

Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine.

机译:横流式船舶动水轮机的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

In the search for clean, renewable energy, the kinetic energy of water currents in oceans, rivers, and estuaries is being studied as a predictable and environmentally benign source. We investigate the flow past a cross flow hydrokinetic turbine (CFHT) in which a helical blade turns around a shaft perpendicular to the free stream under the hydrodynamic forces exerted by the flow. This type of turbine, while very different from the classical horizontal axis turbine commonly used in the wind energy field, presents advantages in the context of hydrokinetic energy harvesting, such as independence from current direction, including reversibility, stacking, and self-starting without complex pitch mechanisms. This thesis develops a numerical simulation methodology that applies the Reynolds Average Navier Stokes equations and the three-dimensional sliding mesh technique to model CFHTs. The methodology is validated against small scale experiments, available within NNMREC at the University of Washington and is used to investigate the efficiency of the energy capture and the hydrodynamic forces acting on the blades. First, we study the stationary turbine and conclude that the developed methodology accurately models the starting torque of a turbine initially in static conditions; some limitations are found, however, in predicting separated flow. The dynamic performance of the rotating turbine is predicted with reasonable accuracy using the sliding mesh technique. Excellent qualitative agreement with experimental trends is found in the results, and the actual predicted values from the simulations show good agreement with measurements. Though limitations in accurately modeling dynamic stall for the rotating turbine are confirmed, the good qualitative agreement suggests this methodology can be used to support turbine design and performance over a wide range of parameters, minimizing the number of prototypes to build and experiments to run in the pursuit of an optimized turbine. This methodology can also provide a cost-effective way of evaluating detailed full scale effects, such as mooring lines or local bottom bathymetry features, on both turbine performance and environmental assessment.
机译:在寻找清洁的可再生能源时,正在研究海洋,河流和河口中水流的动能,将其作为可预测的,对环境有益的能源。我们研究流经横流流体动力学涡轮机(CFHT)的流,其中螺旋叶片在由流施加的流体动力的作用下绕垂直于自由流的轴旋转。这种类型的涡轮机虽然与风能领域中常用的经典水平轴涡轮机有很大不同,但在流体动能收集方面具有优势,例如与电流方向无关,包括可逆性,堆叠性以及无需复杂的自启动音调机制。本文开发了一种数值模拟方法,该方法应用雷诺平均Navier Stokes方程和三维滑动网格技术对CFHT进行建模。该方法论已通过华盛顿大学NNMREC内部提供的小规模实验得到验证,并用于研究能量捕获的效率和作用在叶片上的流体动力。首先,我们研究固定式涡轮机,并得出结论,所开发的方法可以准确地对初始处于静态条件下的涡轮机启动扭矩进行建模。但是,在预测分离流量时发现了一些限制。使用滑动网格技术可以合理地预测旋转涡轮机的动态性能。结果中发现与实验趋势极佳的定性吻合,模拟的实际预测值与测量值吻合良好。尽管确认了对旋转涡轮机动态失速进行精确建模的局限性,但良好的定性协议表明,该方法可用于支持各种参数下的涡轮机设计和性能,从而最大程度地减少了在涡轮机中制造和运行的原型数量。追求优化的涡轮机。这种方法还可以提供一种经济有效的方式来评估详细的满量程影响,例如系泊缆或局部底部测深特性,同时对涡轮机性能和环境进行评估。

著录项

  • 作者

    Hall, Taylor Jessica.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Naval.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2012
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号