首页> 外文学位 >Traffic operation and control during evacuation conditions: An integrated management system with multi-level coordination.
【24h】

Traffic operation and control during evacuation conditions: An integrated management system with multi-level coordination.

机译:疏散条件下的交通运营和控制:具有多级协调的集成管理系统。

获取原文
获取原文并翻译 | 示例

摘要

During the past decade, large storms, mudflows, hurricanes, floods, and many other extreme conditions have caused massive economic and human losses in cities and regions around the world. In the United States, Hurricane Katrina and the September 11th, Terrorists Attacks are relevant examples of such conditions where explicit cost-benefit analyses showed that by presenting a systematic and efficient evacuation scheme in response to such hazards, people lives can be preserved at a much lower cost.;Evacuation study is a complex subject that mainly includes (1) a demand side, (2) a network supply side, (3) a control side and (4) a behavioral side. Focusing on the control side of the problem, the objective of this thesis is to offer a dynamic integrated control strategy that can respond in real-time to any change in demand and supply during extreme conditions. Given the complexity of the problem, a simulation based model is required to get a better understanding and analysis of the process at hand. Through the use of the dominant path concept and transforming the evacuation problem into multiple corridor-based evacuation problems, the corridors where lanes can be reversed and where "intelligent" control tools can be deployed are better assessed. Evaluating evacuation in such framework allows the integration of real-time control strategies into the problem; the demand aspect (specification of the safe versus unsafe zones) and the complexities related to the dynamic assignment of evacuees to different routes are better captured: the model can integrate multiple data sources and network-level traffic routing while allowing improved coordinated control strategies (optimal signal timing, use of variable message signs and ramp-metering).;The logic adopted to realize the objective above is a reactive integrated control. A control "optimal" module mainly includes VMS, path-based coordinated signals and ramp metering control strategies; this module is integrated into a dynamic simulation-assignment framework. A base case simulation using the "every-day" origin-destination demand pattern allows determining the network-wide performance measures including the experienced delays and travel-times. Once determined and with the knowledge of the regions to be evacuated, the highest number of impacted vehicles (traveling to, from or through the impacted areas) and the corresponding dominant paths are identified. Accordingly, coordinating between the controls strategies along these paths (corridors) allows a faster and smoother evacuation. After identifying the components of the above control "optimization" logic, the formulated method is tested on a portion of the Maryland CHART network, USA. The portion considered consists of the I-95 corridor network between Washington, D.C. and Baltimore. The impacted area to be evacuated is inside the capital beltway (i.e. Washington DC) and the safe area to be reached is along the path towards Baltimore. The network is bounded by I-695 in the north, I-495 in the south, US 29 to the west and I-295 to the east. The network includes four main freeways (I-95, I-295, I-495 and I-695), as well as two main arterials (US29 and Route 1). The Maryland CHART network reduces to 2182 nodes, 3387 links and 111 zones.
机译:在过去的十年中,大风暴,泥石流,飓风,洪水和许多其他极端条件在世界各地的城市和地区造成了巨大的经济和人员损失。在美国,卡特里娜飓风和9月11日的“恐怖袭击”就是这种情况的相关例子,明确的成本效益分析表明,通过针对这种危害提出系统有效的疏散方案,可以在很大程度上保护人们的生命。疏散研究是一个复杂的主题,主要包括(1)需求方,(2)网络供应方,(3)控制方和(4)行为方。着眼于问题的控制方面,本文的目的是提供一种动态集成控制策略,该策略可以实时响应极端条件下的供需变化。考虑到问题的复杂性,需要基于仿真的模型来更好地了解和分析手头的流程。通过使用主导路径概念并将疏散问题转换为基于走廊的多个疏散问题,可以更好地评估可以反转车道和可以部署“智能”控制工具的走廊。在这种框架内评估疏散情况,可以将实时控制策略整合到问题中;可以更好地捕获需求方面(安全区与非安全区的规范)以及与将撤离者动态分配给不同路线有关的复杂性:该模型可以集成多个数据源和网络级流量路由,同时允许改进的协调控制策略(最佳信号定时,可变消息符号的使用和斜坡计量)。实现上述目标的逻辑是无功集成控制。控制“最佳”模块主要包括VMS,基于路径的协调信号和斜坡计量控制策略。该模块已集成到动态仿真分配框架中。使用“每天”始发地-目的地需求模式的基本案例模拟可以确定整个网络的性能指标,包括经历的延迟和旅行时间。一旦确定并了解了要撤离的区域,就会确定受影响的车辆数量最多(行驶到,离开或穿过受影响区域)和相应的主要路径。因此,沿着这些路径(走廊)在控制策略之间进行协调可以使疏散更快,更顺畅。在确定了上述控制“优化”逻辑的组成部分之后,将在美国马里兰州CHART网络的一部分上测试所制定的方法。所考虑的部分由华盛顿特区和巴尔的摩之间的I-95走廊网络组成。待疏散的受影响区域位于首都环城公路(即华盛顿特区)内,安全区域沿通往巴尔的摩的路径到达。该网络的北部是I-695,南部是I-495,西部是US 29,东部是I-295。该网络包括四个主要高速公路(I-95,I-295,I-495和I-695)以及两个主要干线(US29和1号公路)。马里兰CHART网络减少到2182个节点,3387个链接和111个区域。

著录项

  • 作者

    Khan, Muhammad Zeeshan.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Engineering Civil.
  • 学位 M.S.
  • 年度 2010
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号