首页> 外文学位 >Modeling of mechanical damping and electrical properties of carbon nanotube reinforced composites.
【24h】

Modeling of mechanical damping and electrical properties of carbon nanotube reinforced composites.

机译:碳纳米管增强复合材料的机械阻尼和电性能建模。

获取原文
获取原文并翻译 | 示例

摘要

Carbon nanotubes (CNTs) possess unique and superior properties that can effectively enhance the mechanical damping and electrical performances of polymers. This thesis presents the micromechanical modeling of damping characteristics and numerical simulation of electrical properties of CNT reinforced composites. Influences of a variety of material and application factors on composites performances have been discussed.;First, we review the existing micromechanical models that predict effective modulus of short fiber composites. Influences of nanotube waviness, modeling CNT as solid isotropic cylinder, and nanotube bundling effect have been investigated based on Mori-Tanaka model.;Based on the understanding of static mechanical reinforcement induced by CNTs, we further study energy dissipation in nanocomposites under dynamic loading. To quantify the main source of energy dissipation, a micromechanical model based on the quasi-static stick-slip analysis has been developed to predict both loss and storage moduli of polymer composites containing CNTs ( 2 vol. %) as a function of external strain in elastic region ( 1.2%). Influence of nanotube bundling, nanotube alignment, and test frequency on damping property of composites was studied using this micromechanical model.;To better understand nanotube waviness influence on percolation threshold of CNT reinforced polymer composites, a 3D Monte Carlo model has been proposed to represent curved nanotube as a chain of three straight segments. Simulation results show that the value of percolation threshold increases with nanotube waviness.;The calculation of electrical conductivity of nanocomposites can be a challenging task because of the complexity of nanotube networks and the difficulty in quantifying electronic tunneling through junctions. Numerical simulation has been widely utilized, but due to computation capacity restraints most studies are limited to solve 2D problems or low filler aspect ratios. In our approach, the simulation is effectively simplified based on the fact that tunneling resistance plays a determinant role in composites electrical resistance and contributions from intrinsic filler resistance can be neglected. As a result, the number of effective resistors in the complex resistor network can be reduced more than half and 3D simulation on nanotubes with high aspect ratios up to 1000 and volume fraction up to 1 vol. % becomes possible.
机译:碳纳米管(CNT)具有独特而优越的性能,可以有效地增强聚合物的机械阻尼和电气性能。本文提出了碳纳米管增强复合材料的阻尼特性的微机械建模和电性能的数值模拟。讨论了各种材料和应用因素对复合材料性能的影响。首先,我们回顾了现有的预测短纤维复合材料有效模量的微力学模型。基于Mori-Tanaka模型,研究了碳纳米管波纹度,将碳纳米管建模为固体各向同性圆柱体以及纳米管束缚效应的影响。在了解碳纳米管引起的静态机械增强的基础上,我们进一步研究了动态载荷下纳米复合材料的能量耗散。为了量化能量消耗的主要来源,已经开发了基于准静态粘滑分析的微机械模型,以预测包含CNTs(<2 vol。%)的聚合物复合材料的损耗和储能模量作为外部应变的函数在弹性区域(<1.2%)。利用该微力学模型研究了纳米管束缚,纳米管排列和测试频率对复合材料阻尼性能的影响。为了更好地理解纳米管波纹度对碳纳米管增强聚合物复合材料渗流阈值的影响,提出了3D蒙特卡洛模型来表示弯曲。碳纳米管作为三个直链段的链。仿真结果表明,渗流阈值随纳米管波纹度的增加而增加。由于纳米管网络的复杂性和难以量化通过结的电子隧穿,因此纳米复合材料的电导率计算可能是一项艰巨的任务。数值模拟已被广泛使用,但是由于计算能力的限制,大多数研究限于解决二维问题或低填充物纵横比。在我们的方法中,基于隧道电阻在复合材料电阻中起决定性作用并且可以忽略固有填充电阻的影响这一事实,从而有效简化了仿真。结果,可以将复杂电阻器网络中有效电阻器的数量减少一半以上,并可以对长宽比高达1000且体积分数高达1 vol的纳米管进行3D模拟。 %成为可能。

著录项

  • 作者

    Yu, Yong.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号